Anthony J Mannucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8326104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Science, 1998, 33, 565-582.	0.8	1,078
2	Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophysical Research Letters, 1997, 24, 2283-2286.	1.5	692
3	Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. Journal of Geophysical Research, 2004, 109, .	3.3	401
4	Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003 "Halloween Storms― Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	401
5	CHAMP and SAC-C atmospheric occultation results and intercomparisons. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	291
6	Achieving Climate Change Absolute Accuracy in Orbit. Bulletin of the American Meteorological Society, 2013, 94, 1519-1539.	1.7	239
7	The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: Comparison to other Halloween events and the Bastille Day event. Geophysical Research Letters, 2005, 32, .	1.5	212
8	Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. Journal of Geophysical Research, 2008, 113, .	3.3	190
9	Demonstrating soil moisture remote sensing with observations from the UK TechDemoSatâ€₁ satellite mission. Geophysical Research Letters, 2016, 43, 3317-3324.	1.5	174
10	SporadicEmorphology from GPS-CHAMP radio occultation. Journal of Geophysical Research, 2005, 110,	3.3	155
11	Global ionosphere perturbations monitored by the Worldwide GPS Network. Geophysical Research Letters, 1996, 23, 3219-3222.	1.5	149
12	Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Science, 2005, 40, n/a-n/a.	0.8	147
13	A brief review of "solar flare effects―on the ionosphere. Radio Science, 2009, 44, .	0.8	138
14	lonospheric signatures of Tohokuâ€Oki tsunami of March 11, 2011: Model comparisons near the epicenter. Radio Science, 2012, 47, .	0.8	134
15	Lower troposphere refractivity bias in GPS occultation retrievals. Journal of Geophysical Research, 2003, 108, .	3.3	124
16	Subdaily northern hemisphere ionospheric maps using an extensive network of GPS receivers. Radio Science, 1995, 30, 639-648.	0.8	117
17	Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers. Journal of Geophysical Research, 2009, 114, .	3.3	116
18	Quantification of structural uncertainty in climate data records from GPS radio occultation. Atmospheric Chemistry and Physics, 2013, 13, 1469-1484.	1.9	113

#	Article	IF	CITATIONS
19	Reproducibility of GPS radio occultation data for climate monitoring: Profileâ€toâ€profile interâ€comparison of CHAMP climate records 2002 to 2008 from six data centers. Journal of Geophysical Research, 2012, 117, .	3.3	109
20	Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. Journal of Geophysical Research, 2012, 117, .	3.3	106
21	The 2009 Samoa and 2010 Chile tsunamis as observed in the ionosphere using GPS total electron content. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	93
22	Wetland monitoring with Global Navigation Satellite System reflectometry. Earth and Space Science, 2017, 4, 16-39.	1.1	91
23	Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study. Earth, Planets and Space, 2012, 64, 1287-1294.	0.9	88
24	The COSMIC/FORMOSAT-3 Radio Occultation Mission after 12 Years: Accomplishments, Remaining Challenges, and Potential Impacts of COSMIC-2. Bulletin of the American Meteorological Society, 2020, 101, E1107-E1136.	1.7	88
25	Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration. Scientific Reports, 2017, 7, 46607.	1.6	86
26	A comparative study of ionospheric total electron content measurements using global ionospheric maps of GPS, TOPEX radar, and the Bent model. Radio Science, 1997, 32, 1499-1512.	0.8	83
27	Space Weather Observations by GNSS Radio Occultation: From FORMOSATâ€3/COSMIC to FORMOSATâ€7/COSMICâ€2. Space Weather, 2014, 12, 616-621.	1.3	81
28	Superposed epoch analysis of the dayside ionospheric response to four intense geomagnetic storms. Journal of Geophysical Research, 2008, 113, .	3.3	79
29	Effect of intense December 2006 solar radio bursts on GPS receivers. Space Weather, 2008, 6, .	1.3	79
30	lonospheric total electron content perturbations monitored by the GPS global network during two northern hemisphere winter storms. Journal of Geophysical Research, 1998, 103, 26409-26420.	3.3	74
31	Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean. Atmospheric Chemistry and Physics, 2012, 12, 903-918.	1.9	72
32	CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: NmF2, hmF2, and vertical drift using groundâ€based observations. Space Weather, 2011, 9, .	1.3	71
33	CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations. Space Weather, 2012, 10, .	1.3	65
34	Rising and setting GPS occultations by use of openâ€loop tracking. Journal of Geophysical Research, 2009, 114, .	3.3	63
35	XUV Photometer System (XPS): Improved Solar Irradiance Algorithm Using CHIANTI Spectral Models. Solar Physics, 2008, 250, 235-267.	1.0	62
36	Heliospheric plasma sheet (HPS) impingement onto the magnetosphere as a cause of relativistic electron dropouts (REDs) via coherent EMIC wave scattering with possible consequences for climate change mechanisms. Journal of Geophysical Research: Space Physics, 2016, 121, 10,130.	0.8	59

#	Article	IF	CITATIONS
37	JPL/USC GAIM: On the impact of using COSMIC and groundâ€based GPS measurements to estimate ionospheric parameters. Journal of Geophysical Research, 2010, 115, .	3.3	58
38	The interplanetary causes of geomagnetic activity during the 7–17 March 2012 interval: a CAWSES II overview. Journal of Space Weather and Space Climate, 2014, 4, A02.	1.1	58
39	Assessment of global TEC mapping using a three-dimensional electron density model. Journal of Atmospheric and Solar-Terrestrial Physics, 1999, 61, 1227-1236.	0.6	54
40	Review and perspectives: Understanding naturalâ€hazardsâ€generated ionospheric perturbations using GPS measurements and coupled modeling. Radio Science, 2016, 51, 951-961.	0.8	53
41	Superâ€refraction effects on GPS radio occultation refractivity in marine boundary layers. Geophysical Research Letters, 2010, 37, .	1.5	51
42	Variability of ionospheric TEC during solar and geomagnetic minima (2008 and 2009): external high speed stream drivers. Annales Geophysicae, 2013, 31, 263-276.	0.6	51
43	A Review of Alfvénic Turbulence in Highâ€5peed Solar Wind Streams: Hints From Cometary Plasma Turbulence. Journal of Geophysical Research: Space Physics, 2018, 123, 2458-2492.	0.8	51
44	Unusual topside ionospheric density response to the November 2003 superstorm. Journal of Geophysical Research, 2006, 111, .	3.3	49
45	New Capabilities for Prediction of Highâ€Latitude Ionospheric Scintillation: A Novel Approach With Machine Learning. Space Weather, 2018, 16, 1817-1846.	1.3	49
46	Ionospheric Storms at Mid-Latitude: A Short Review. Geophysical Monograph Series, 0, , 9-24.	0.1	48
47	Solar wind driving of ionosphereâ€ŧhermosphere responses in three storms near St. Patrick's Day in 2012, 2013, and 2015. Journal of Geophysical Research: Space Physics, 2016, 121, 8900-8923.	0.8	48
48	Ionospheric redistribution during geomagnetic storms. Journal of Geophysical Research: Space Physics, 2013, 118, 7928-7939.	0.8	47
49	Local time dependence of the prompt ionospheric response for the 7, 9, and 10 November 2004 superstorms. Journal of Geophysical Research, 2009, 114, .	3.3	45
50	The Solar and Interplanetary Causes of Superstorms (Minimum <i>Dst</i> ≤ˆ²250 nT) During the Space Age. Journal of Geophysical Research: Space Physics, 2019, 124, 3926-3948.	0.8	45
51	The impact of large scale ionospheric structure on radio occultation retrievals. Atmospheric Measurement Techniques, 2011, 4, 2837-2850.	1.2	42
52	Comparison of COSMIC occultationâ€based electron density profiles and TIP observations with Arecibo incoherent scatter radar data. Radio Science, 2009, 44, .	0.8	41
53	Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event. Annales Geophysicae, 2007, 25, 569-574.	0.6	40
54	Global ionospheric TEC variations during January 10, 1997 storm. Geophysical Research Letters, 1998, 25, 2589-2592.	1.5	38

#	Article	IF	CITATIONS
55	SAMI3/SDâ€WACCMâ€X simulations of ionospheric variability during northern winter 2009. Space Weather, 2015, 13, 568-584.	1.3	35
56	The ionospheric impact of the October 2003 storm event on Wide Area Augmentation System. GPS Solutions, 2005, 9, 41-50.	2.2	34
57	Ionospheric VTEC and thermospheric infrared emission dynamics during corotating interaction region and high-speed stream intervals at solar minimum: 25 March to 26 April 2008. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	34
58	A Comprehensive Analysis of Multiscale Fieldâ€Aligned Currents: Characteristics, Controlling Parameters, and Relationships. Journal of Geophysical Research: Space Physics, 2017, 122, 11,931.	0.8	33
59	Consistency and structural uncertainty of multi-mission GPS radio occultation records. Atmospheric Measurement Techniques, 2020, 13, 2547-2575.	1.2	33
60	A new physicsâ€based modeling approach for tsunamiâ€ionosphere coupling. Geophysical Research Letters, 2015, 42, 4736-4744.	1.5	32
61	Atmospheric diurnal variations observed with GPS radio occultation soundings. Atmospheric Chemistry and Physics, 2010, 10, 6889-6899.	1.9	31
62	Attribution of interminimum changes in global and hemispheric total electron content. Journal of Geophysical Research: Space Physics, 2017, 122, 2424-2439.	0.8	30
63	Assessing the performance of GPS radio occultation measurements in retrieving tropospheric humidity in cloudiness: A comparison study with radiosondes, ERA-Interim, and AIRS data sets. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7718-7731.	1.2	29
64	Ushering in a New Frontier in Geospace Through Data Science. Journal of Geophysical Research: Space Physics, 2017, 122, 12,586.	0.8	28
65	Assimilative Modeling of Ionospheric Disturbances with FORMOSAT-3/COSMIC and Ground-Based GPS Measurements. Terrestrial, Atmospheric and Oceanic Sciences, 2009, 20, 273.	0.3	27
66	Ensemble Modeling with Data Assimilation Models: A New Strategy for Space Weather Specifications, Forecasts, and Science. Space Weather, 2014, 12, 123-126.	1.3	26
67	Tohoku-Oki earthquake caused major ionospheric disturbances at 450 km altitude over Alaska. Radio Science, 2014, 49, 1206-1213.	0.8	26
68	Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS). Radio Science, 2016, 51, 1157-1165.	0.8	26
69	New leveling and bias estimation algorithms for processing COSMIC/FORMOSATâ€3 data for slant total electron content measurements. Radio Science, 2011, 46, .	0.8	24
70	Improving GPS Radio occultation stratospheric refractivity retrievals for climate benchmarking. Geophysical Research Letters, 2012, 39, .	1.5	24
71	The 2013 Chelyabinsk meteor ionospheric impact studied using GPS measurements. Radio Science, 2014, 49, 341-350.	0.8	24
72	Extreme changes in the dayside ionosphere during a Carrington-type magnetic storm. Journal of Space Weather and Space Climate, 2012, 2, A05.	1.1	23

#	Article	IF	CITATIONS
73	On the comparisons of tropical relative humidity in the lower and middle troposphere among COSMIC radio occultations and MERRA and ECMWF data sets. Atmospheric Measurement Techniques, 2015, 8, 1789-1797.	1.2	22
74	Physicsâ€Based Modeling of Earthquakeâ€Induced Ionospheric Disturbances. Journal of Geophysical Research: Space Physics, 2018, 123, 8021-8038.	0.8	22
75	GPS normalization and preliminary modeling results of total electron content during a midlatitude space weather event. Radio Science, 2001, 36, 351-361.	0.8	21
76	A comprehensive survey of atmospheric quasi 3 day planetaryâ€scale waves and their impacts on the dayâ€ŧoâ€day variations of the equatorial ionosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 2979-2992.	0.8	21
77	Revisiting Ionosphereâ€Thermosphere Responses to Solar Wind Driving in Superstorms of November 2003 and 2004. Journal of Geophysical Research: Space Physics, 2017, 122, 10,824.	0.8	21
78	A correlation study regarding the AE index and ACE solar wind data for Alfvénic intervals using wavelet decomposition and reconstruction. Nonlinear Processes in Geophysics, 2018, 25, 67-76.	0.6	21
79	Ionospheric-Magnetospheric-Heliospheric Coupling: Storm-Time Thermal Plasma Redistribution. Geophysical Monograph Series, 0, , 121-134.	0.1	20
80	Heterodyne spectroscopy of carbon monoxide lines perturbed by hydrogen and helium. Journal of Chemical Physics, 1991, 95, 7795-7805.	1.2	19
81	Extreme solar EUV flares and ICMEs and resultant extreme ionospheric effects: Comparison of the Halloween 2003 and the Bastille Day events. Radio Science, 2006, 41, .	0.8	19
82	Observational tests of hurricane intensity estimations using GPS radio occultations. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1936-1948.	1.2	19
83	GPS radio occupations coming of age: Spacecraft launches add two new instruments for climate monitoring. Eos, 2002, 83, 37.	0.1	18
84	Electron density retrieval from occulting GNSS signals using a gradient-aided inversion technique. Advances in Space Research, 2011, 47, 289-295.	1.2	18
85	Global Modeling of Storm-Time Thermospheric Dynamics and Electrodynamics. Geophysical Monograph Series, 0, , 187-200.	0.1	18
86	A first demonstration of Mars crosslink occultation measurements. Radio Science, 2015, 50, 997-1007.	0.8	18
87	Medium-Range Thermosphere-Ionosphere Storm Forecasts. Space Weather, 2015, 13, 125-129.	1.3	18
88	lonosphereâ€ŧhermosphere energy budgets for the ICME storms of March 2013 and 2015 estimated with GITM and observational proxies. Space Weather, 2017, 15, 1102-1124.	1.3	18
89	Statistical characterization of ionosphere anomalies and their relationship to space weather events. Journal of Space Weather and Space Climate, 2016, 6, A5.	1.1	17
90	CEDARâ€GEM Challenge for Systematic Assessment of Ionosphere/Thermosphere Models in Predicting TEC During the 2006 December Storm Event. Space Weather, 2017, 15, 1238-1256.	1.3	17

#	Article	IF	CITATIONS
91	Generating climate benchmark atmospheric soundings using GPS occultation data. , 2006, , .		15
92	Simulation of PPEF Effects in Dayside Low-Latitude Ionosphere for the October 30, 2003, Superstorm. Geophysical Monograph Series, 0, , 169-177.	0.1	15
93	Multiinstrument observations of a geomagnetic storm and its effects on the Arctic ionosphere: A case study of the 19 February 2014 storm. Radio Science, 2017, 52, 146-165.	0.8	15
94	A Study of Daytime Lâ€Band Scintillation in Association With Sporadic <i>E</i> Along the Magnetic Dip Equator. Radio Science, 2017, 52, 1570-1577.	0.8	15
95	Comment on "Modeling Extreme "Carringtonâ€Type―Space Weather Events Using Threeâ€Dimensional Global MHD Simulations―by C. M. Ngwira, A. Pulkkinen, M. M. Kuznetsova, and A. Glocer― Journal of Geophysical Research: Space Physics, 2018, 123, 1388-1392.	0.8	15
96	Dayside ionospheric (GPS) response to corotating solar wind streams. Geophysical Monograph Series, 2006, , 245-270.	0.1	14
97	Use of the L2C signal for inversions of GPS radio occultation data in the neutral atmosphere. GPS Solutions, 2014, 18, 405-416.	2.2	14
98	Sudden ionospheric delay decorrelation and its impact on the Wide Area Augmentation System (WAAS). Radio Science, 2004, 39, n/a-n/a.	0.8	13
99	Storm Time Energy Budgets of the Global Thermosphere. Geophysical Monograph Series, 0, , 235-246.	0.1	13
100	Intraseasonal temperature variability in the upper troposphere and lower stratosphere from the GPS radio occultation measurements. Journal of Geophysical Research, 2012, 117, .	3.3	13
101	Intermediateâ€scale plasma irregularities in the polar ionosphere inferred from GPS radio occultation. Geophysical Research Letters, 2015, 42, 688-696.	1.5	13
102	Satelliteâ€based observations of tsunamiâ€induced mesosphere airglow perturbations. Geophysical Research Letters, 2017, 44, 522-532.	1.5	13
103	An Assessment of the Current WAAS Ionospheric Correction Algorithm in the South American Region. Navigation, Journal of the Institute of Navigation, 2003, 50, 193-204.	1.7	12
104	GPS-based remote sensing of the geospace environment: horizontal and vertical structure of the ionosphere and plasmasphere. , 2004, , .		12
105	Characterization of the impact of GLONASS observables on receiver bias estimation for ionospheric studies. Radio Science, 2016, 51, 1010-1021.	0.8	12
106	Estimation of energy budget of ionosphere-thermosphere system during two CIR-HSS events: observations and modeling. Journal of Space Weather and Space Climate, 2016, 6, A20.	1.1	12
107	Finding multiscale connectivity in our geospace observational system: Network analysis of total electron content. Journal of Geophysical Research: Space Physics, 2017, 122, 7683-7697.	0.8	12
108	Semianalytical Estimation of Energy Deposition in the Ionosphere by Monochromatic Alfvén Waves. Journal of Geophysical Research: Space Physics, 2018, 123, 5210-5222.	0.8	12

#	Article	IF	CITATIONS
109	Altitudinal variation of midlatitude localized TEC enhancement from ground―and spaceâ€based measurements. Space Weather, 2008, 6, .	1.3	11
110	Low- and Middle-Latitude Ionospheric Dynamics Associated with Magnetic Storms. Geophysical Monograph Series, 0, , 51-61.	0.1	11
111	A validation study for GPS radio occultation data with moist thermodynamic structure of tropical cyclones. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9401-9413.	1.2	11
112	Possible Influence of Extreme Magnetic Storms on the Thermosphere in the High Latitudes. Space Weather, 2018, 16, 802-813.	1.3	11
113	Future of Planetary Atmospheric, Surface, and Interior Science Using Radio and Laser Links. Radio Science, 2019, 54, 365-377.	0.8	11
114	Echo of ring current storms in the ionosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 205, 105300.	0.6	11
115	Modulation of equatorial electrojet irregularities by atmospheric gravity waves. Journal of Geophysical Research: Space Physics, 2014, 119, 366-374.	0.8	10
116	Evaluation of CMIP5 upper troposphere and lower stratosphere geopotential height with GPS radio occultation observations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1678-1689.	1.2	10
117	Comparisons of the tropospheric specific humidity from GPS radio occultations with ERA-Interim, NASA MERRA, and AIRS data. Atmospheric Measurement Techniques, 2018, 11, 1193-1206.	1.2	10
118	Localized thermosphere ionization events during the highâ€speed stream interval of 29 April to 5 May 2011. Journal of Geophysical Research: Space Physics, 2015, 120, 675-696.	0.8	9
119	On forecasting ionospheric total electron content responses to high-speed solar wind streams. Journal of Space Weather and Space Climate, 2016, 6, A19.	1.1	9
120	On measuring the off-equatorial conductivity before and during convective ionospheric storms. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	8
121	Hemispheric daytime ionospheric response to intense solar wind forcing. Geophysical Monograph Series, 2005, , 261-275.	0.1	8
122	How Do Coronal Hole Storms Affect the Upper Atmosphere?. Eos, 2012, 93, 77-79.	0.1	8
123	Use of radio occultation to probe the high-latitude ionosphere. Atmospheric Measurement Techniques, 2015, 8, 2789-2800.	1.2	8
124	Scientific challenges in thermosphere-ionosphere forecasting – conclusions from the October 2014 NASA JPL community workshop. Journal of Space Weather and Space Climate, 2016, 6, E01.	1.1	8
125	Comment on: Heterodyne spectroscopy of carbon monoxide lines perturbed by hydrogen and helium. Journal of Chemical Physics, 1992, 97, 1610-1611.	1.2	7
126	Single frequency processing of atmospheric radio occultations. International Journal of Remote Sensing, 2004, 25, 3731-3744.	1.3	7

#	Article	IF	CITATIONS
127	Detection of temperatures conducive to Arctic polar stratospheric clouds using CHAMP and SACâ \in C radio occultation data. Journal of Geophysical Research, 2009, 114, .	3.3	7
128	Using GPS radio occultations to infer the water vapor feedback. Geophysical Research Letters, 2016, 43, 11,841.	1.5	7
129	Equatorial Intraseasonal Temperature Oscillations in the Lower Thermosphere From SABER. Geophysical Research Letters, 2018, 45, 10,893.	1.5	7
130	Ionospheric Electron Content During Solar Cycle 23. Journal of Geophysical Research: Space Physics, 2018, 123, 5223-5231.	0.8	7
131	Quantifying the Tropical Upper Tropospheric Warming Amplification Using Radio Occultation Measurements. Earth and Space Science, 2021, 8, e2020EA001597.	1.1	7
132	Sensitivity of Stratospheric Retrievals from Radio Occultations on Upper Boundary Conditions. , 2006, , 17-26.		7
133	Backpropagation Processing of GPS Radio Occultation Data. , 2003, , 415-422.		7
134	Interplanetary Causes of Middle Latitude Ionospheric Disturbances. Geophysical Monograph Series, 0, , 99-119.	0.1	6
135	Flux tube analysis of Lâ€band ionospheric scintillation. Journal of Geophysical Research: Space Physics, 2013, 118, 3791-3804.	0.8	6
136	Demonstration of Mars crosslink occultation measurements for future small spacecraft constellations. , 2016, , .		6
137	Evaluation of Total Electron Content Prediction Using Three Ionosphereâ€Thermosphere Models. Space Weather, 2020, 18, e2020SW002452.	1.3	6
138	Ionospheric specification algorithms for precise GPS-based aircraft navigation. Radio Science, 2001, 36, 287-298.	0.8	5
139	Mapping the Time-Varying Distribution of High-Altitude Plasma During Storms. Geophysical Monograph Series, 0, , 91-98.	0.1	5
140	Midlatitude Ionospheric Dynamics and Disturbances: Introduction. Geophysical Monograph Series, 0, , 1-7.	0.1	5
141	Wetland mapping and measurement of flood inundated area using ground-reflected GNSS signals in a bistatic radar system. , 2016, , .		5
142	Optical and Radio Observations and AMIE/TIEGCM Modeling of Nighttime Traveling Ionospheric Disturbances at Midlatitudes During Geomagnetic Storms. Geophysical Monograph Series, 0, , 271-281.	0.1	4
143	First calculation of phase and coherence of longitudinally separated Lâ€band equatorial ionospheric scintillation. Geophysical Research Letters, 2013, 40, 3496-3501.	1.5	4
144	Ionosphere and Thermosphere Responses to Extreme Geomagnetic Storms âŽ. , 2018, , 493-511.		4

lonosphere and Thermosphere Responses to Extreme Geomagnetic Storms $\hat{a}\check{z}$, 2018, , 493-511. 144

#	Article	IF	CITATIONS
145	Polar Sea Ice Thickness and Melt Pond Fraction Measurements with Multi-Frequency Bistatic Radar Polarimetric and Interferometric Reflectometry. , 2019, , .		4
146	Challenges in Specifying and Predicting Space Weather. Space Weather, 2021, 19, e2019SW002404.	1.3	4
147	Determination of Position of Jupiter From Very-Long Baseline Interferometry Observations of ULYSSES. Astronomical Journal, 1996, 112, 1294.	1.9	4
148	TEMPORAL DEVELOPMENT OF DAYSIDE TEC VARIATIONS DURING THE OCTOBER 30, 2003 SUPERSTORM: MATCHING MODELING TO OBSERVATIONS. , 2007, , 69-77.		4
149	Remote Sensing of Fine-Scale Vertical Structures in the Atmosphere with GPS Occultations. , 2004, , .		3
150	A Data-model Comparative Study of Ionospheric Positive Storm Phase in the Midlatitude F Region. Geophysical Monograph Series, 0, , 63-75.	0.1	3
151	Effect of smallâ€scale ionospheric variability on GNSS radio occultation data quality. Journal of Geophysical Research: Space Physics, 2015, 120, 7937-7951.	0.8	3
152	The future of planetary atmospheric, surface, and interior science using radio and laser links. , 2017, , .		3
153	On the role of neutral flow in field-aligned currents. Annales Geophysicae, 2018, 36, 53-57.	0.6	3
154	Thermosphereâ€lonosphere Modeling With Forecastable Inputs: Case Study of the June 2012 High‧peed Stream Geomagnetic Storm. Space Weather, 2020, 18, e2019SW002352.	1.3	3
155	Charting a Path Toward Improved Space Weather Forecasting. Space Weather, 2012, 10, n/a-n/a.	1.3	2
156	Impact of the Neutral Wind Dynamo on the Development of the Region 2 Dynamo. Geophysical Monograph Series, 0, , 179-186.	0.1	2
157	Studying the Atmosphere Using Global Navigation Satellites. Eos, 2014, 95, 389-391.	0.1	2
158	On scientific inference in geophysics and the use of numerical simulations for scientific investigations. Earth and Space Science, 2015, 2, 359-367.	1.1	2
159	Mediumâ€Range Forecasting of Solar Wind: A Case Study of Building Regression Model With Space Weather Forecast Testbed (SWFT). Space Weather, 2020, 18, e2019SW002433.	1.3	2
160	<title>Toward new scientific observations from GPS occultations: advances in retrieval methods</title> . , 2004, , .		1
161	Assimilation of Observations with Models to Better Understand Severe Ionospheric Weather at Mid-Latitudes. Geophysical Monograph Series, 0, , 35-49.	0.1	1
162	New developments on estimating satellite interfrequency bias for SVN49. GPS Solutions, 2011, 15, 233-238.	2.2	1

#	Article	IF	CITATIONS
163	Polar Topside TEC Enhancement Revealed by Jasonâ€⊋ Measurements. Earth and Space Science, 2021, 8, e2020EA001429.	1.1	1
164	Tomographic Radio Occultation Methods Applied to a Dense Cubesat Formation in Low Mars Orbit. Radio Science, 2021, 56, e2020RS007199.	0.8	1
165	Middle-Latitude Ionospheric Irregularities and Scintillation During Geomagnetic Storms. , 0, , .		1
166	Multiple Scientific Uses of Radio Occultation: Global Navigation Satellite System Radio Occultation Workshop; Pasadena, California, 7-9 April 2009. Eos, 2009, 90, 251-251.	0.1	0
167	Optical and Radio Observations of Structure in the Midlatitude Ionosphere: Midlatitude Ionospheric Dynamics and Disturbances. Geophysical Monograph Series, 0, , 311-317.	0.1	0
168	Phase and coherence analysis of VHF scintillation over Christmas Island. Annales Geophysicae, 2014, 32, 293-300.	0.6	0
169	Community-wide model validation study for systematic assessment of ionosphere models. , 2015, , .		0
170	High-value remote sensing for the geosciences: Opportunistic use of navigation satellite signals. , 2017, , .		0
171	New lightningâ€derived vertical total electron content data provides unique global ionospheric measurements. Space Weather, 0, , .	1.3	0