Jian-guo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8325910/publications.pdf

Version: 2024-02-01

71061 54882 7,620 120 41 84 citations h-index g-index papers 125 125 125 10223 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Trace water triggers high-efficiency photocatalytic hydrogen peroxide production. Journal of Energy Chemistry, 2022, 64, 47-54.	7.1	33
2	Effect of Crossâ€Linked Structures on Mechanical Properties of Styreneâ€Butadiene Rubber via Molecular Dynamics Simulation. Macromolecular Theory and Simulations, 2022, 31, 2100054.	0.6	7
3	Interface hydrophobic tunnel engineering: A general strategy to boost electrochemical conversion of N2 to NH3. Nano Energy, 2022, 92, 106784.	8.2	33
4	Engineering the geometric and electronic structure of Ru <i>via</i> Ru–TiO ₂ interaction for enhanced selective hydrogenation. Catalysis Science and Technology, 2022, 12, 1005-1016.	2.1	12
5	Synergistic Effect of Coordination Fields and Hydrosolvents on the Single-Atom Catalytic Property in H ₂ O ₂ Synthesis: A Density Functional Theory Study. Journal of Physical Chemistry C, 2022, 126, 2349-2364.	1.5	9
6	Synergistic effect of doped nitrogen and oxygen-containing functional groups on electrochemical synthesis of hydrogen peroxide. Journal of Materials Chemistry A, 2022, 10, 4749-4757.	5.2	26
7	Weak Pb–O of confined [Pb–O ₄] in pyramidal sillenite-type Bi ₁₂ PbO ₂₀ for enhanced electrochemical ozone production. Journal of Materials Chemistry A, 2022, 10, 5430-5441.	5.2	10
8	High-efficiency visible-light photocatalytic H ₂ O ₂ production using CdSe-based core/shell quantum dots. Catalysis Science and Technology, 2022, 12, 2865-2871.	2.1	2
9	Ru Cluster-Decorated Cu Nanoparticles Enhanced Selectivity to Imine from One-Pot Cascade Transformations. Industrial & Engineering Chemistry Research, 2022, 61, 3474-3482.	1.8	6
10	Unravelling the functional complexity of oxygen-containing groups on carbon for the reduction of NO with NH3. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104261.	2.7	4
11	Reaction and Transport Co-Intensification Enhanced Continuous Flow Electrocatalytic Aminoxyl-Mediated Oxidation of Sterol Intermediates by 3D Porous Framework Electrode. Chemical Engineering Journal, 2022, , 136659.	6.6	5
12	Multiphysics modeling of proton exchange membrane water electrolysis: From steady to dynamic behavior. AICHE Journal, 2022, 68, .	1.8	7
13	Lattice Oxygen of PbO ₂ (101) Consuming and Refilling via Electrochemical Ozone Production and H ₂ O Dissociation. Journal of Physical Chemistry C, 2022, 126, 8627-8636.	1.5	7
14	Computational screening of O-functional MXenes for electrocatalytic ammonia synthesis. Chinese Journal of Catalysis, 2022, 43, 1860-1869.	6.9	9
15	Oxygen vacancies on Nb ₂ O ₅ enhanced the performance of H ₂ O ₂ electrosynthesis from O ₂ reduction. Chemical Communications, 2022, 58, 8428-8431.	2.2	5
16	Effects of surface functionalization of mxene-based nanocatalysts on hydrogen evolution reaction performance. Catalysis Today, 2021, 368, 187-195.	2.2	51
17	Efficient photocatalytic reduction of CO2 using Fe-based covalent triazine frameworks decorated with in situ grown ZnFe2O4 nanoparticles. Chemical Engineering Journal, 2021, 408, 127358.	6.6	28
18	Enhanced oxygen reduction reaction performance over Pd catalysts by oxygen-surface-modified SiC. Chinese Journal of Catalysis, 2021, 42, 963-970.	6.9	1

#	Article	IF	CITATIONS
19	Dual effect of the coordination field and sulphuric acid on the properties of a single-atom catalyst in the electrosynthesis of H ₂ O ₂ . Physical Chemistry Chemical Physics, 2021, 23, 21338-21349.	1.3	15
20	Ultrathin 2D flower-like CoP@C with the active (211) facet for efficient electrocatalytic water splitting. CrystEngComm, 2021, 23, 1777-1784.	1.3	9
21	Quantitative Insights into the Reaction Mechanism for the Direct Synthesis of H ₂ O ₂ over Transition Metals: Coverage-Dependent Microkinetic Modeling. ACS Catalysis, 2021, 11, 1202-1221.	5.5	32
22	Lattice oxygen of PbO ₂ induces crystal facet dependent electrochemical ozone production. Journal of Materials Chemistry A, 2021, 9, 9010-9017.	5.2	25
23	A first-principles study of reaction mechanism over carbon decorated oxygen-deficient TiO2 supported Pd catalyst in direct synthesis of H2O2. Chinese Journal of Chemical Engineering, 2021, 31, 126-134.	1.7	10
24	Atomic Pt Embedded in BNC Nanotubes for Enhanced Electrochemical Ozone Production via an Oxygen Intermediate-Rich Local Environment. ACS Catalysis, 2021, 11, 5438-5451.	5.5	36
25	Oxygen Groups Enhancing the Mechanism of Nitrogen Reduction Reaction Properties on Ru- or Fe-Supported Nb ₂ C MXene. Journal of Physical Chemistry C, 2021, 125, 14636-14645.	1.5	24
26	Geometric and electronic effects on the performance of a bifunctional Ru2P catalyst in the hydrogenation and acceptorless dehydrogenation of N-heteroarenes. Chinese Journal of Catalysis, 2021, 42, 1185-1194.	6.9	14
27	High-performance single-atom Ni catalyst loaded graphyne for H2O2 green synthesis in aqueous media. Journal of Colloid and Interface Science, 2021, 599, 58-67.	5.0	12
28	Meso-scale simulation on mechanism of Na+-gated water-conducting nanochannels in zeolite NaA. Journal of Membrane Science, 2021, 635, 119462.	4.1	5
29	Pd-Co alloy supported on TiO2 with oxygen vacancies for efficient N2 and O2 electrocatalytic reduction. Applied Surface Science, 2021, 567, 150680.	3.1	14
30	Oxygen-deficient TiO ₂ and carbon coupling synergistically boost the activity of Ru nanoparticles for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 10160-10168.	5.2	28
31	Building highly active hybrid double–atom sites in C2N for enhanced electrocatalytic hydrogen peroxide synthesis. Green Energy and Environment, 2021, 6, 846-857.	4.7	22
32	Sintering Rate and Mechanism of Supported Pt Nanoparticles by Multiscale Simulation. Langmuir, 2021, 37, 12529-12538.	1.6	5
33	Symbolic Transformer Accelerating Machine Learning Screening of Hydrogen and Deuterium Evolution Reaction Catalysts in MA ₂ Z ₄ Materials. ACS Applied Materials & Interfaces, 2021, 13, 50878-50891.	4.0	33
34	Mo2TiC2 MXene: A Promising Catalyst for Electrocatalytic Ammonia Synthesis. Catalysis Today, 2020, 339, 120-126.	2.2	102
35	Hydrogen peroxide synthesis on porous graphitic carbon nitride using water as a hydrogen source. Journal of Materials Chemistry A, 2020, 8, 124-137.	5. 2	18
36	Hydrogen peroxide electrochemical synthesis on hybrid double-atom (Pd–Cu) doped N vacancy g-C ₃ N ₄ : a novel design strategy for electrocatalyst screening. Journal of Materials Chemistry A, 2020, 8, 2672-2683.	5.2	40

#	Article	IF	Citations
37	A generalized formula for two-dimensional diffusion of CO in graphene nanoslits with different Pt loadings. Green Energy and Environment, 2020, 5, 322-332.	4.7	10
38	A Cu and Fe dual-atom nanozyme mimicking cytochrome c oxidase to boost the oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 16994-17001.	5.2	109
39	Synergistic effect of size-dependent PtZn nanoparticles and zinc single-atom sites for electrochemical ozone production in neutral media. Journal of Energy Chemistry, 2020, 51, 312-322.	7.1	32
40	High-Throughput Screening of Hydrogen Evolution Reaction Catalysts in MXene Materials. Journal of Physical Chemistry C, 2020, 124, 13695-13705.	1.5	51
41	Machine-learning-accelerated screening of hydrogen evolution catalysts in MBenes materials. Applied Surface Science, 2020, 526, 146522.	3.1	50
42	Simultaneous electrochemical ozone production and hydrogen evolution by using tantalum-based nanorods electrocatalysts. Applied Catalysis B: Environmental, 2020, 266, 118632.	10.8	42
43	Synergetic effect of pyrrolic-N and doped boron in mesoporous carbon for electrocatalytic ozone production. Journal of Materials Chemistry A, 2020, 8, 2336-2342.	5.2	21
44	Na ⁺ -gated water-conducting nanochannels for boosting CO ₂ conversion to liquid fuels. Science, 2020, 367, 667-671.	6.0	136
45	A new strategy for engineering a hierarchical porous carbon-anchored Fe single-atom electrocatalyst and the insights into its bifunctional catalysis for flexible rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 9981-9990.	5.2	97
46	Ru nanoparticles deposited on ultrathin TiO2 nanosheets as highly active catalyst for levulinic acid hydrogenation to \hat{l}^3 -valerolactone. Applied Catalysis B: Environmental, 2019, 259, 118076.	10.8	58
47	Biomass Valorization via Paired Electrosynthesis Over Vanadium Nitrideâ€Based Electrocatalysts. Advanced Functional Materials, 2019, 29, 1904780.	7.8	120
48	Optimizing Alkyne Hydrogenation Performance of Pd on Carbon in Situ Decorated with Oxygen-Deficient TiO ₂ by Integrating the Reaction and Diffusion. ACS Catalysis, 2019, 9, 10656-10667.	5.5	50
49	MoO _{<i>x</i>} Nanoparticle Catalysts for <scp>d</scp> -Glucose Epimerization and Their Electrical Immobilization in a Continuous Flow Reactor. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44118-44123.	4.0	2
50	Fe(CN) ₅ @PIL-derived N-doped porous carbon with FeC _x N _y active sites as a robust electrocatalyst for the oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 97-105.	2.1	10
51	Defect engineering of nickel hydroxide nanosheets by Ostwald ripening for enhanced selective electrocatalytic alcohol oxidation. Green Chemistry, 2019, 21, 578-588.	4.6	71
52	Synergistic effect of surface oxygen vacancies and interfacial charge transfer on Fe(III)/Bi2MoO6 for efficient photocatalysis. Applied Catalysis B: Environmental, 2019, 247, 150-162.	10.8	185
53	Micromechanical simulation of the pore size effect on the structural stability of brittle porous materials with bicontinuous morphology. Physical Chemistry Chemical Physics, 2019, 21, 12895-12904.	1.3	10
54	Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of N-heterocycles. Chinese Journal of Catalysis, 2019, 40, 980-1002.	6.9	68

#	Article	lF	Citations
55	Effect of Hydrogen-Induced Metallization on Chemisorption. Journal of Physical Chemistry C, 2019, 123, 15171-15175.	1.5	3
56	Microporous 3D Covalent Organic Frameworks for Liquid Chromatographic Separation of Xylene Isomers and Ethylbenzene. Journal of the American Chemical Society, 2019, 141, 8996-9003.	6.6	171
57	Multiscale Simulation of Morphology Evolution of Supported Pt Nanoparticles via Interfacial Control. Langmuir, 2019, 35, 6393-6402.	1.6	8
58	Single and double boron atoms doped nanoporous C ₂ Nâ€" <i>h</i> 2D electrocatalysts for highly efficient N ₂ reduction reaction: a density functional theory study. Nanotechnology, 2019, 30, 335403.	1.3	81
59	2D-3D transformation of palladium and gold nanoparticles on functionalized Mo2C by multiscale simulation. Applied Surface Science, 2019, 481, 554-563.	3.1	10
60	Multiscale simulation on thermal stability of supported metal nanocatalysts. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1405.	6.2	3
61	Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2. Journal of Energy Chemistry, 2019, 39, 144-151.	7.1	79
62	Multiscale Simulation on Product Distribution from Pyrolysis of Styrene-Butadiene Rubber. Polymers, 2019, 11, 1967.	2.0	13
63	Achieving 59% faradaic efficiency of the N ₂ electroreduction reaction in an aqueous Zn–N ₂ battery by facilely regulating the surface mass transport on metallic copper. Chemical Communications, 2019, 55, 12801-12804.	2.2	45
64	Enhanced Oxygen Reduction Activity on Carbon Supported Pd Nanoparticles Via SiO ₂ . ChemCatChem, 2019, 11, 1278-1285.	1.8	9
65	Electrocatalytic Upgrading of Ligninâ€Derived Bioâ€Oil Based on Surfaceâ€Engineered PtNiB Nanostructure. Advanced Functional Materials, 2019, 29, 1807651.	7.8	70
66	A theoretical study of electrocatalytic ammonia synthesis on single metal atom/MXene. Chinese Journal of Catalysis, 2019, 40, 152-159.	6.9	76
67	Palladium Dimer Supported on Mo ₂ CO ₂ (MXene) for Direct Methane to Methanol Conversion. Advanced Theory and Simulations, 2019, 2, 1800158.	1.3	22
68	Functionalization Ti3C2 MXene by the adsorption or substitution of single metal atom. Applied Surface Science, 2019, 465, 911-918.	3.1	63
69	Highly Efficient Ammonia Synthesis Electrocatalyst: Single Ru Atom on Naturally Nanoporous Carbon Materials. Advanced Theory and Simulations, 2018, 1, 1800018.	1.3	90
70	Oxygen vacancies on TiO ₂ promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 2264-2272.	5.2	163
71	Pd-Containing Nanostructures for Electrochemical CO ₂ Reduction Reaction. ACS Catalysis, 2018, 8, 1510-1519.	5 . 5	261
72	Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia. ACS Catalysis, 2018, 8, 488-502.	5.5	32

#	Article	IF	Citations
73	Atomically dispersed Pd catalysts in graphyne nanopore: formation and reactivity. Nanotechnology, 2017, 28, 295403.	1.3	26
74	Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Research, 2017, 10, 2181-2191.	5.8	208
75	The Effect of Nâ€Containing Supports on Catalytic CO Oxidation Activity over Highly Dispersed Pt/UiOâ€67. European Journal of Inorganic Chemistry, 2017, 2017, 172-178.	1.0	18
76	PtPd alloy embedded in nitrogen-rich graphene nanopores: High-performance bifunctional electrocatalysts for hydrogen evolution and oxygen reduction. Carbon, 2017, 114, 740-748.	5.4	94
77	Electrochemical promotion of catalysis over Pd nanoparticles for CO ₂ reduction. Chemical Science, 2017, 8, 2569-2573.	3.7	72
78	Double Nanoporous Structure with Nanoporous PtFe Embedded in Graphene Nanopores: Highly Efficient Bifunctional Electrocatalysts for Hydrogen Evolution and Oxygen Reduction. Advanced Materials Interfaces, 2017, 4, 1601029.	1.9	36
79	Enhanced Selectivity of Phenol Hydrogenation in Low-Pressure CO ₂ over Supported Pd Catalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 11628-11636.	3.2	30
80	Hierarchical Porous NC@CuCo Nitride Nanosheet Networks: Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting and Selective Electrooxidation of Benzyl Alcohol. Advanced Functional Materials, 2017, 27, 1704169.	7.8	267
81	Enhanced Catalytic Performances for Guaiacol Aqueous Phase Hydrogenation over Ruthenium Supported on Mesoporous TiO ₂ Hollow Spheres Embedded with SiO ₂ Nanoparticles. ChemistrySelect, 2017, 2, 9599-9606.	0.7	16
82	Tuning the confinement space of N-carbon shell-coated ruthenium nanoparticles: highly efficient electrocatalysts for hydrogen evolution reaction. Catalysis Science and Technology, 2017, 7, 4964-4970.	2.1	36
83	Improved Oxygen Reduction Reaction Performance of Co Confined in Ordered N-Doped Porous Carbon Derived from ZIF-67@PILs. Industrial & Engineering Chemistry Research, 2017, 56, 11100-11110.	1.8	50
84	Selective phenol hydrogenation to cyclohexanone over alkali–metal-promoted Pd/TiO ₂ in aqueous media. Green Chemistry, 2017, 19, 3585-3594.	4.6	88
85	Efficient Activation of Li ₂ S by Transition Metal Phosphides Nanoparticles for Highly Stable Lithium–Sulfur Batteries. ACS Energy Letters, 2017, 2, 1711-1719.	8.8	252
86	Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 632-640.	5.2	151
87	Twin-like ternary PtCoFe alloy in nitrogen-doped graphene nanopores as a highly effective electrocatalyst for oxygen reduction. Catalysis Science and Technology, 2016, 6, 5942-5948.	2.1	15
88	First-Principles Thermodynamics Study of Spinel MgAl ₂ O ₄ Surface Stability. Journal of Physical Chemistry C, 2016, 120, 19087-19096.	1.5	38
89	Mo Doping Induced More Active Sites in Urchinâ€Like W ₁₈ O ₄₉ Nanostructure with Remarkably Enhanced Performance for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26, 5778-5786.	7.8	177
90	Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nature Communications, 2016, 7, 11203.	5.8	1,136

#	Article	IF	Citations
91	Integrating cobalt phosphide and cobalt nitride-embedded nitrogen-rich nanocarbons: high-performance bifunctional electrocatalysts for oxygen reduction and evolution. Journal of Materials Chemistry A, 2016, 4, 10575-10584.	5.2	141
92	CO oxidation over supported <scp>P</scp> t clusters at different <scp>CO</scp> coverage. International Journal of Quantum Chemistry, 2016, 116, 939-944.	1.0	10
93	Graphene Oxide Catalyzed Câ^'H Bond Activation: The Importance of Oxygen Functional Groups for Biaryl Construction. Angewandte Chemie, 2016, 128, 3176-3180.	1.6	20
94	Rýcktitelbild: Graphene Oxide Catalyzed Câ^'H Bond Activation: The Importance of Oxygen Functional Groups for Biaryl Construction (Angew. Chem. 9/2016). Angewandte Chemie, 2016, 128, 3290-3290.	1.6	3
95	Graphene Oxide Catalyzed Câ^'H Bond Activation: The Importance of Oxygen Functional Groups for Biaryl Construction. Angewandte Chemie - International Edition, 2016, 55, 3124-3128.	7.2	129
96	Mechanistic insights into the structureâ€dependent selectivity of catalytic furfural conversion on platinum catalysts. AICHE Journal, 2015, 61, 3812-3824.	1.8	53
97	Synergistic Effect of Nitrogen in Cobalt Nitride and Nitrogenâ€Doped Hollow Carbon Spheres for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 1826-1832.	1.8	62
98	In Situ Fabrication of PtCo Alloy Embedded in Nitrogenâ€Doped Graphene Nanopores as Synergistic Catalyst for Oxygen Reduction Reaction. Advanced Materials Interfaces, 2015, 2, 1500365.	1.9	21
99	Waste Tire Pyrolysis for the Production of Light Hydrocarbons over Layered Catalysts. Energy Technology, 2015, 3, 851-855.	1.8	12
100	Size-Dependent Electrocatalytic Reduction of CO ₂ over Pd Nanoparticles. Journal of the American Chemical Society, 2015, 137, 4288-4291.	6.6	929
101	Role of pretreatment with acid and base on the distribution of the products obtained via lignocellulosic biomass pyrolysis. RSC Advances, 2015, 5, 24984-24989.	1.7	28
102	Preparation and catalytic properties of Pd nanoparticles supported on micro-crystal DUT-67 MOFs. RSC Advances, 2015, 5, 32714-32719.	1.7	27
103	Synergistic effect of S,N-co-doped mesoporous carbon materials with high performance for oxygen-reduction reaction and Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 20244-20253.	5.2	53
104	Effect of graphene with nanopores on metal clusters. Physical Chemistry Chemical Physics, 2015, 17, 24420-24426.	1.3	13
105	Transition of chemically modified diphenylalanine peptide assemblies revealed by atomic force microscopy. RSC Advances, 2014, 4, 7516.	1.7	13
106	A radar-like iron based nanohybrid as an efficient and stable electrocatalyst for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 6703-6707.	5.2	18
107	Pyridyne cycloaddition of graphene: "external―active sites for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 897-901.	5.2	33
108	Synthesis, properties, and magnetism–structure relationship of lanthanide-based metal–organic frameworks with (ethylenedithio)acetic acid. CrystEngComm, 2014, 16, 6963.	1.3	16

#	Article	IF	CITATIONS
109	Additives initiate selective production of chemicals from biomass pyrolysis. Bioresource Technology, 2014, 156, 376-379.	4.8	7
110	Experimental, DFT and quantum Monte Carlo studies of a series of peptide-based metal–organic frameworks: synthesis, structures and properties. Inorganic Chemistry Frontiers, 2014, 1, 526-533.	3.0	10
111	Density functional theory study of <i>p</i> hloroaniline adsorption on Pd surfaces and clusters. International Journal of Quantum Chemistry, 2014, 114, 895-899.	1.0	6
112	Role of Phenolic Groups in the Stabilization of Palladium Nanoparticles. Industrial & Engineering Chemistry Research, 2013, 52, 9783-9789.	1.8	28
113	Distinctions between Supported Au and Pt Catalysts for CO Oxidation: Insights from DFT Study. Journal of Physical Chemistry C, 2013, 117, 21331-21336.	1.5	28
114	The effect of earth metal ion on the property of peptide-based metal–organic frameworks. CrystEngComm, 2013, 15, 5545.	1,3	12
115	Position of substituent dependent dimensionality in Ln–Cu heterometallic coordination polymers. CrystEngComm, 2012, 14, 679-683.	1.3	16
116	Water oxidation on Nâ€Doped TiO ₂ nanotube arrays. International Journal of Quantum Chemistry, 2012, 112, 2585-2590.	1.0	10
117	BrÃnsted–Evans–Polanyi Relations for H2O2 Synthesis on Gold Surfaces. Catalysis Letters, 2012, 142, 601-607.	1.4	6
118	CO Oxidation by Lattice Oxygen on V ₂ O ₅ Nanotubes. Journal of Physical Chemistry C, 2011, 115, 14806-14811.	1.5	19
119	Ionothermal Synthesis of Zirconium Phosphates and Their Catalytic Behavior in the Selective Oxidation of Cyclohexane. Angewandte Chemie - International Edition, 2009, 48, 2206-2209.	7.2	89
120	Point-Defect Mediated Bonding of Pt Clusters on (5,5) Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 890-893.	1.5	58