Peng-Fei Cao

List of Publications by Citations

Source: https://exaly.com/author-pdf/8325769/peng-fei-cao-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63
papers

1,598
citations

24
h-index

38
g-index

69
ext. papers

2,143
ext. citations

8.3
avg, IF

L-index

#	Paper	IF	Citations
63	Big Effect of Small Nanoparticles: A Shift in Paradigm for Polymer Nanocomposites. <i>ACS Nano</i> , 2017 , 11, 752-759	16.7	140
62	Superstretchable, Self-Healing Polymeric Elastomers with Tunable Properties. <i>Advanced Functional Materials</i> , 2018 , 28, 1800741	15.6	114
61	Mechanically Robust, Ultraelastic Hierarchical Foam with Tunable Properties via 3D Printing. <i>Advanced Functional Materials</i> , 2018 , 28, 1800631	15.6	82
60	Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes. <i>ACS Energy Letters</i> , 2019 , 4, 1171-1180	20.1	71
59	Single-Ion Conducting Polymer Electrolytes for Solid-State Lithium Metal Batteries: Design, Performance, and Challenges. <i>Advanced Energy Materials</i> , 2021 , 11, 2003836	21.8	71
58	3D Printed Multifunctional, Hyperelastic Silicone Rubber Foam. <i>Advanced Functional Materials</i> , 2019 , 29, 1900469	15.6	63
57	Smart cements and cement additives for oil and gas operations. <i>Journal of Petroleum Science and Engineering</i> , 2015 , 129, 63-76	4.4	62
56	Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 3470-3478	9.5	61
55	Influence of Chain Rigidity and Dielectric Constant on the Glass Transition Temperature in Polymerized Ionic Liquids. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 11511-11519	3.4	60
54	Stimuli-Responsive Polymers and their Potential Applications in Oil-Gas Industry. <i>Polymer Reviews</i> , 2015 , 55, 706-733	14	52
53	Core-shell type multiarm star poly(Laprolactone) with high molecular weight hyperbranched polyethylenimine as core: Synthesis, characterization and encapsulation properties. <i>European Polymer Journal</i> , 2008 , 44, 1060-1070	5.2	51
52	Utilizing Viral Nanoparticle/Dendron Hybrid Conjugates in Photodynamic Therapy for Dual Delivery to Macrophages and Cancer Cells. <i>Bioconjugate Chemistry</i> , 2016 , 27, 1227-35	6.3	41
51	Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries 🖪 review. <i>Materials Today</i> , 2020 , 40, 140-159	21.8	37
50	Modulating the guest encapsulation and release properties of multi-arm star polyethylenimine-block-poly(Eaprolactone). <i>Journal of Polymer Science Part A</i> , 2009 , 47, 5184-5193	2.5	36
49	A star-shaped single lithium-ion conducting copolymer by grafting a POSS nanoparticle. <i>Polymer</i> , 2017 , 124, 117-127	3.9	34
48	Hydrogen-bond strength changes network dynamics in associating telechelic PDMS. <i>Soft Matter</i> , 2018 , 14, 1235-1246	3.6	31
47	A trefoil knotted polymer produced through ring expansion. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5127-31	16.4	30

(2020-2019)

28 27 22 25 24
27 5 26 25
25
25
24
23
22
20
19
18
18
18
17
17
17
16

28	Star-like copolymer stabilized noble-metal nanoparticle powders. <i>Nanoscale</i> , 2016 , 8, 7435-42	7.7	14
27	Synthesizing a Trefoil Knotted Block Copolymer via Ring-Expansion Strategy. <i>Macromolecules</i> , 2017 , 50, 1473-1481	5.5	11
26	Recent Developments and Challenges in Hybrid Solid Electrolytes for Lithium-Ion Batteries. <i>Frontiers in Energy Research</i> , 2020 , 8,	3.8	11
25	Plasmonic Retrofitting of Membrane Materials: Shifting from Self-Regulation to On-Command Control of Fluid Flow. <i>Advanced Materials</i> , 2018 , 30, e1707598	24	10
24	Tailored CO2-philic Gas Separation Membranes via One-Pot Thiol@ne Chemistry. <i>Macromolecules</i> , 2019 , 52, 5819-5828	5.5	10
23	A Trefoil Knotted Polymer Produced through Ring Expansion. <i>Angewandte Chemie</i> , 2015 , 127, 5216-522	29 .6	9
22	Critical Role of the Interfacial Layer in Associating Polymers with Microphase Separation. <i>Macromolecules</i> , 2021 , 54, 4246-4256	5.5	9
21	Improved Single-Ion Conductivity of Polymer Electrolyte via Accelerated Segmental Dynamics. <i>ACS Applied Energy Materials</i> , 2020 , 3, 12540-12548	6.1	8
20	Facile Fabrication of Porous Si Microspheres from Low-Cost Precursors for High-Capacity Electrode. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901726	4.6	8
19	Highly Recyclable, Mechanically Isotropic and Healable 3D-Printed Elastomers via Polyurea Vitrimers 2021 , 3, 1095-1103		8
18	Elastic vitrimers: Beyond thermoplastic and thermoset elastomers. <i>Matter</i> , 2022 , 5, 1391-1422	12.7	8
17	On the Formation and Electropolymerization of a Star Copolymer With Peripheral Carbazoles. <i>Macromolecular Chemistry and Physics</i> , 2013 , 214, 386-395	2.6	7
16	Rational Polymer Design of Stretchable Poly(ionic liquid) Membranes for Dual Applications. <i>Macromolecules</i> , 2021 , 54, 896-905	5.5	7
15	Highly efficient reversible addition f ragmentation chain-transfer polymerization in ethanol/water via flow chemistry. <i>Polymer International</i> , 2017 , 66, 1252-1258	3.3	6
14	Demonstration of self-healing barrier films for vacuum insulation panels. <i>Vacuum</i> , 2019 , 164, 132-139	3.7	4
13	Highly Permeable Oligo(ethylene oxide)-co-poly(dimethylsiloxane) Membranes for Carbon Dioxide Separation. <i>Advanced Sustainable Systems</i> , 2018 , 2, 1700113	5.9	4
12	Polymer Nanosheet Containing Star-Like Copolymers: A Novel Scalable Controlled Release System. <i>Small</i> , 2018 , 14, e1800115	11	4
11	Unraveling the Role of Neutral Units for Single-Ion Conducting Polymer Electrolytes. <i>ACS Applied Materials & Mate</i>	9.5	4

LIST OF PUBLICATIONS

10	Highly Stretchable, Ultratough, and Multifunctional Poly(vinyl chloride)-Based Plastics via a Green, Star-Shaped Macromolecular Additive. <i>Macromolecules</i> , 2021 , 54, 3169-3180	5.5	4
9	Turning Rubber into a Glass: Mechanical Reinforcement by Microphase Separation <i>ACS Macro Letters</i> , 2021 , 10, 197-202	6.6	4
8	Glass-fiber-reinforced polymeric film as an efficient protecting layer for stable Li metal electrodes. <i>Cell Reports Physical Science</i> , 2021 , 2, 100534	6.1	4
7	Applications of Fourier Transform Infrared (FTIR) Imaging 2014 , 1179-1200		3
6	Surpassing the stiffness-extensibility trade-off of elastomers via mastering the hydrogen-bonding clusters. <i>Matter</i> , 2022 , 5, 237-252	12.7	3
5	Continuous Flow Fabrication of Block Copolymer afted Silica Micro-Particles in Environmentally Friendly Water/Ethanol Media. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1800451	3.9	3
4	Living Radical Polymerization from Colloidally-Templated Nanopatterned Surface. <i>ACS Symposium Series</i> , 2015 , 169-185	0.4	1
3	An in situ generated polymer electrolyte via anionic ring-opening polymerization for lithium ulfur batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 25927-25933	13	O
2	CoreBhell Gold Nanoparticle-Star Copolymer Composites with Gradient Transfer and Transport Properties: Toward Electro-Optical Sensors and Catalysis. <i>ACS Applied Nano Materials</i> , 2021 , 4, 1394-140	o ō .6	0
1	Selective Plasticization of Poly (ethylene oxide) (PEO) Block in Nanostructured Polystyrene PEO Polystyrene Triblock Copolymer Electrolytes. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 050506	3.9	