
## Alba EspargarÃ<sup>3</sup>

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/832551/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Design, Synthesis, and In Vitro, In Silico and In Cellulo Evaluation of New Pyrimidine and Pyridine<br>Amide and Carbamate Derivatives as Multi-Functional Cholinesterase Inhibitors. Pharmaceuticals,<br>2022, 15, 673.                                         | 3.8  | 3         |
| 2  | Azobioisosteres of Curcumin with Pronounced Activity against Amyloid Aggregation, Intracellular<br>Oxidative Stress, and Neuroinflammation. Chemistry - A European Journal, 2021, 27, 6015-6027.                                                                 | 3.3  | 4         |
| 3  | Dual Inhibitors of Amyloid-β and Tau Aggregation with Amyloid-β Disaggregating Properties: Extended<br><i>In Cellulo</i> , <i>In Silico</i> , and Kinetic Studies of Multifunctional Anti-Alzheimer's Agents. ACS<br>Chemical Neuroscience, 2021, 12, 2057-2068. | 3.5  | 36        |
| 4  | Dual Effect of Prussian Blue Nanoparticles on Aβ40 Aggregation: β-Sheet Fibril Reduction and Copper<br>Dyshomeostasis Regulation. Biomacromolecules, 2021, 22, 430-440.                                                                                          | 5.4  | 11        |
| 5  | New Pyrimidine and Pyridine Derivatives as Multitarget Cholinesterase Inhibitors: Design, Synthesis,<br>and <i>In Vitro</i> and <i>In Cellulo</i> Evaluation. ACS Chemical Neuroscience, 2021, 12, 4090-4112.                                                    | 3.5  | 16        |
| 6  | Centrally Active Multitarget Anti-Alzheimer Agents Derived from the Antioxidant Lead CR-6. Journal of<br>Medicinal Chemistry, 2020, 63, 9360-9390.                                                                                                               | 6.4  | 25        |
| 7  | Pharmacophore Modeling and 3D-QSAR Study of Indole and Isatin Derivatives as Antiamyloidogenic<br>Agents Targeting Alzheimer's Disease. Molecules, 2020, 25, 5773.                                                                                               | 3.8  | 9         |
| 8  | Thiosemicarbazone Derivatives as Inhibitors of Amyloid-Î <sup>2</sup> Aggregation: Effect of Metal Coordination.<br>Inorganic Chemistry, 2020, 59, 6978-6987.                                                                                                    | 4.0  | 20        |
| 9  | On the Binding of Congo Red to Amyloid Fibrils. Angewandte Chemie - International Edition, 2020, 59, 8104-8107.                                                                                                                                                  | 13.8 | 36        |
| 10 | On the Binding of Congo Red to Amyloid Fibrils. Angewandte Chemie, 2020, 132, 8181-8184.                                                                                                                                                                         | 2.0  | 11        |
| 11 | A novel class of multitarget anti-Alzheimer benzohomoadamantane‒chlorotacrine hybrids modulating<br>cholinesterases and glutamate NMDA receptors. European Journal of Medicinal Chemistry, 2019, 180,<br>613-626.                                                | 5.5  | 26        |
| 12 | Synthesis, In Vitro Profiling, and In Vivo Efficacy Studies of a New Family of Multitarget<br>Anti-Alzheimer Compounds. Proceedings (mdpi), 2019, 22, .                                                                                                          | 0.2  | 0         |
| 13 | Amyloid Pan-inhibitors: One Family of Compounds To Cope with All Conformational Diseases. ACS<br>Chemical Neuroscience, 2019, 10, 1311-1317.                                                                                                                     | 3.5  | 14        |
| 14 | Bacterial Inclusion Bodies for Anti-Amyloid Drug Discovery: Current and Future Screening Methods.<br>Current Protein and Peptide Science, 2019, 20, 563-576.                                                                                                     | 1.4  | 7         |
| 15 | Combined in Vitro Cell-Based/in Silico Screening of Naturally Occurring Flavonoids and Phenolic<br>Compounds as Potential Anti-Alzheimer Drugs. Journal of Natural Products, 2017, 80, 278-289.                                                                  | 3.0  | 68        |
| 16 | Design, synthesis and multitarget biological profiling of second-generation anti-Alzheimer<br>rhein–huprine hybrids. Future Medicinal Chemistry, 2017, 9, 965-981.                                                                                               | 2.3  | 40        |
| 17 | Evidence of Protein Adsorption in Pegylated Liposomes: Influence of Liposomal Decoration.<br>Nanomaterials, 2017, 7, 37.                                                                                                                                         | 4.1  | 19        |
| 18 | Key Points Concerning Amyloid Infectivity and Prion-Like Neuronal Invasion. Frontiers in Molecular<br>Neuroscience, 2016, 9, 29,                                                                                                                                 | 2.9  | 19        |

Alba EspargarÃ<sup>3</sup>

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Histidineâ€Rich Oligopeptides To Lessen Copperâ€Mediated Amyloidâ€Î² Toxicity. Chemistry - A European<br>Journal, 2016, 22, 7268-7280.                                                                                             | 3.3 | 25        |
| 20 | Investigation into the stability and reactivity of the pentacyclic alkaloid dehydroevodiamine and the benz-analog thereof. Tetrahedron, 2016, 72, 2535-2543.                                                                       | 1.9 | 9         |
| 21 | Natural Xanthones from Garcinia mangostana with Multifunctional Activities for the Therapy of<br>Alzheimer's Disease. Neurochemical Research, 2016, 41, 1806-1817.                                                                 | 3.3 | 59        |
| 22 | In vivo amyloid aggregation kinetics tracked by timeâ€lapse confocal microscopy in realâ€ŧime.<br>Biotechnology Journal, 2016, 11, 172-177.                                                                                        | 3.5 | 14        |
| 23 | Ultra rapid in vivo screening for anti-Alzheimer anti-amyloid drugs. Scientific Reports, 2016, 6, 23349.                                                                                                                           | 3.3 | 37        |
| 24 | Amyloids in solid-state nuclear magnetic resonance: potential causes of the usually low resolution.<br>International Journal of Nanomedicine, 2015, 10, 6975.                                                                      | 6.7 | 5         |
| 25 | Magnetic Nanoparticles Cross the Blood-Brain Barrier: When Physics Rises to a Challenge.<br>Nanomaterials, 2015, 5, 2231-2248.                                                                                                     | 4.1 | 67        |
| 26 | Could <i>α</i> -Synuclein Amyloid-Like Aggregates Trigger a Prionic Neuronal Invasion?. BioMed Research<br>International, 2015, 2015, 1-7.                                                                                         | 1.9 | 10        |
| 27 | Novel Levetiracetam Derivatives That Are Effective against the Alzheimer-like Phenotype in Mice:<br>Synthesis, in Vitro, ex Vivo, and in Vivo Efficacy Studies. Journal of Medicinal Chemistry, 2015, 58,<br>6018-6032.            | 6.4 | 58        |
| 28 | Predicting the aggregation propensity of prion sequences. Virus Research, 2015, 207, 127-135.                                                                                                                                      | 2.2 | 7         |
| 29 | Shogaol–huprine hybrids: Dual antioxidant and anticholinesterase agents with β-amyloid and tau<br>anti-aggregating properties. Bioorganic and Medicinal Chemistry, 2014, 22, 5298-5307.                                            | 3.0 | 37        |
| 30 | Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer<br>agents targeting l²-amyloid, tau, and cholinesterase pathologies. European Journal of Medicinal<br>Chemistry, 2014, 84, 107-117. | 5.5 | 57        |
| 31 | Thioflavin-S Staining of Bacterial Inclusion Bodies for the Fast, Simple, and Inexpensive Screening of Amyloid Aggregation Inhibitors. Current Medicinal Chemistry, 2014, 21, 1152-1159.                                           | 2.4 | 44        |
| 32 | Screening for Amyloid Aggregation: In-Silico, In-Vitro and In-Vivo Detection. Current Protein and Peptide Science, 2014, 15, 477-489.                                                                                              | 1.4 | 9         |
| 33 | Thioflavin-S staining coupled to flow cytometry. A screening tool to detect in vivo protein aggregation. Molecular BioSystems, 2012, 8, 2839.                                                                                      | 2.9 | 47        |
| 34 | Discovery of Novel Inhibitors of Amyloid β-Peptide 1–42 Aggregation. Journal of Medicinal Chemistry,<br>2012, 55, 9521-9530.                                                                                                       | 6.4 | 39        |
| 35 | Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors. Microbial Cell<br>Factories, 2012, 11, 55.                                                                                                          | 4.0 | 33        |
| 36 | Yeast prions form infectious amyloid inclusion bodies in bacteria. Microbial Cell Factories, 2012, 11, 89.                                                                                                                         | 4.0 | 26        |

Alba EspargarÃ<sup>3</sup>

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Temperature Dependence of the Aggregation Kinetics of Sup35 and Ure2p Yeast Prions.<br>Biomacromolecules, 2012, 13, 474-483.                                                                                    | 5.4  | 18        |
| 38 | Native Structure Protects SUMO Proteins from Aggregation into Amyloid Fibrils. Biomacromolecules, 2012, 13, 1916-1926.                                                                                          | 5.4  | 28        |
| 39 | Effect of the surface charge of artificial model membranes on the aggregation of amyloid β-peptide.<br>Biochimie, 2012, 94, 1730-1738.                                                                          | 2.6  | 40        |
| 40 | Aggregation of the neuroblastoma-associated mutant (S120G) of the human nucleoside diphosphate<br>kinase-A/NM23-H1 into amyloid fibrils. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 384,<br>373-381. | 3.0  | 5         |
| 41 | Bacterial Inclusion Bodies of Alzheimer's Disease βâ€Amyloid Peptides Can Be Employed To Study Native‣ike<br>Aggregation Intermediate States. ChemBioChem, 2011, 12, 407-423.                                   | 2.6  | 90        |
| 42 | Deciphering the role of the thermodynamic and kinetic stabilities of SH3 domains on their aggregation inside bacteria. Proteomics, 2010, 10, 4172-4185.                                                         | 2.2  | 23        |
| 43 | The Role of Protein Sequence and Amino Acid Composition in Amyloid Formation: Scrambling and<br>Backward Reading of IAPP Amyloid Fibrils. Journal of Molecular Biology, 2010, 404, 337-352.                     | 4.2  | 38        |
| 44 | Energy barriers for HETâ€s prion forming domain amyloid formation. FEBS Journal, 2009, 276, 5053-5064.                                                                                                          | 4.7  | 23        |
| 45 | Characterization of the amyloid bacterial inclusion bodies of the HET-s fungal prion. Microbial Cell<br>Factories, 2009, 8, 56.                                                                                 | 4.0  | 37        |
| 46 | Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry. Nature Protocols, 2008, 3, 22-33.                                                  | 12.0 | 51        |
| 47 | Kinetic and thermodynamic stability of bacterial intracellular aggregates. FEBS Letters, 2008, 582, 3669-3673.                                                                                                  | 2.8  | 24        |
| 48 | Inclusion bodies: Specificity in their aggregation process and amyloid-like structure. Biochimica Et<br>Biophysica Acta - Molecular Cell Research, 2008, 1783, 1815-1825.                                       | 4.1  | 131       |
| 49 | Studies on bacterial inclusion bodies. Future Microbiology, 2008, 3, 423-435.                                                                                                                                   | 2.0  | 34        |
| 50 | The in Vivo and in Vitro Aggregation Properties of Globular Proteins Correlate With Their<br>Conformational Stability: The SH3 Case. Journal of Molecular Biology, 2008, 378, 1116-1131.                        | 4.2  | 56        |
| 51 | Detection of transient protein–protein interactions by bimolecular fluorescence complementation:<br>The Abl-SH3 case. Proteomics, 2007, 7, 1023-1036.                                                           | 2.2  | 85        |