Philipp Hoess

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8325329/philipp-hoess-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13	539	7	19
papers	citations	h-index	g-index
19	910	17.8	4.05
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
13	Deep learning enables fast and dense single-molecule localization with high accuracy. <i>Nature Methods</i> , 2021 , 18, 1082-1090	21.6	13
12	MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. <i>Nature Methods</i> , 2020 , 17, 217-224	21.6	204
11	Identification of novel synaptonemal complex components in C. elegans. <i>Journal of Cell Biology</i> , 2020 , 219,	7.3	22
10	Nuclear pores as versatile reference standards for quantitative superresolution microscopy. <i>Nature Methods</i> , 2019 , 16, 1045-1053	21.6	105
9	A tessellation-based colocalization analysis approach for single-molecule localization microscopy. <i>Nature Communications</i> , 2019 , 10, 2379	17.4	31
8	Photoactivation of silicon rhodamines via a light-induced protonation. <i>Nature Communications</i> , 2019 , 10, 4580	17.4	19
7	Real-time 3D single-molecule localization using experimental point spread functions. <i>Nature Methods</i> , 2018 , 15, 367-369	21.6	133
6	Depth-dependent PSF calibration and aberration correction for 3D single-molecule localization		1
5	Fast, robust and precise 3D localization for arbitrary point spread functions		1
4	3D super-resolution fluorescence microscopy maps the variable molecular architecture of the Nuclear Pore Complex		1
3	Nuclear pores as versatile reference standards for quantitative superresolution microscopy		4
2	MINFLUX nanoscopy delivers multicolor nanometer 3D-resolution in (living) cells		4
1	Maximum-likelihood model fitting for quantitative analysis of SMLM data		1