
Tao Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8325231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modification of polyethersulfone membranes – A review of methods. Progress in Materials Science, 2013, 58, 76-150.	32.8	698
2	Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry, 2010, 1, 1430.	3.9	644
3	The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. Journal of Membrane Science, 2012, 417-418, 228-236.	8.2	248
4	Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. Journal of Materials Chemistry B, 2013, 1, 265-275.	5.8	237
5	Polymeric pH-sensitive membranes—A review. Progress in Polymer Science, 2011, 36, 1499-1520.	24.7	231
6	Biocompatibility of modified polyethersulfone membranes by blending an amphiphilic triblock co-polymer of poly(vinyl pyrrolidone)–b-poly(methyl methacrylate)–b-poly(vinyl pyrrolidone). Acta Biomaterialia, 2011, 7, 3370-3381.	8.3	190
7	Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers. Journal of Hazardous Materials, 2013, 263, 467-478.	12.4	190
8	Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin. Journal of Materials Chemistry B, 2014, 2, 363-375.	5.8	162
9	Modification of polyethersulfone membrane by grafting bovine serum albumin on the surface of polyethersulfone/poly(acrylonitrile-co-acrylic acid) blended membrane. Journal of Membrane Science, 2009, 329, 46-55.	8.2	152
10	In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery. Biomacromolecules, 2015, 16, 2522-2528.	5.4	150
11	Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes. Journal of Materials Chemistry B, 2014, 2, 7649-7672.	5.8	149
12	Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes for safe and efficient blood purification. Journal of Membrane Science, 2015, 475, 455-468.	8.2	142
13	Nonchemotherapic and Robust Dualâ€Responsive Nanoagents with Onâ€Demand Bacterial Trapping, Ablation, and Release for Efficient Wound Disinfection. Advanced Functional Materials, 2018, 28, 1705708.	14.9	133
14	Tannic acid-inspiration and post-crosslinking of zwitterionic polymer as a universal approach towards antifouling surface. Chemical Engineering Journal, 2018, 337, 122-132.	12.7	131
15	Post-crosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals. Carbohydrate Polymers, 2015, 133, 587-595.	10.2	130
16	Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles. Journal of Membrane Science, 2011, 369, 258-266.	8.2	121
17	Polyethersulfone enwrapped graphene oxide porous particles for water treatment. Chemical Engineering Journal, 2013, 215-216, 72-81.	12.7	121
18	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117

#	Article	IF	CITATIONS
19	Preparation of porous chitosan gel beads for copper(II) ion adsorption. Journal of Hazardous Materials, 2007, 147, 67-73.	12.4	113
20	Determination of pore size and pore size distribution on the surface of hollow-fiber filtration membranes: a review of methods. Desalination, 2000, 129, 107-123.	8.2	107
21	Improved blood compatibility of polyethersulfone membrane with a hydrophilic and anionic surface. Colloids and Surfaces B: Biointerfaces, 2012, 100, 116-125.	5.0	107
22	Improving the blood compatibility of material surfaces via biomoleculeâ€immobilized musselâ€inspired coatings. Journal of Biomedical Materials Research - Part A, 2011, 96A, 38-45.	4.0	99
23	Blood compatible aspects of DNA-modified polysulfone membrane—protein adsorption and platelet adhesion. Biomaterials, 2003, 24, 3747-3755.	11.4	96
24	Preparation and characterization of poly(acrylonitrile-acrylic acid-N-vinyl pyrrolidinone) terpolymer blended polyethersulfone membranes. Journal of Membrane Science, 2010, 349, 56-64.	8.2	96
25	Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. Journal of Materials Chemistry B, 2019, 7, 1186-1208.	5.8	93
26	High efficient protocol for the modification of polyethersulfone membranes with anticoagulant and antifouling properties via in situ cross-linked copolymerization. Journal of Membrane Science, 2014, 468, 172-183.	8.2	91
27	Design of Antibacterial Poly(ether sulfone) Membranes via Covalently Attaching Hydrogel Thin Layers Loaded with Ag Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 15962-15974.	8.0	91
28	Mussel-Inspired Synthesis of NIR-Responsive and Biocompatible Ag–Graphene 2D Nanoagents for Versatile Bacterial Disinfections. ACS Applied Materials & Interfaces, 2018, 10, 296-307.	8.0	91
29	pH-responsive poly(ether sulfone) composite membranes blended with amphiphilic polystyrene-block-poly(acrylic acid) copolymers. Journal of Membrane Science, 2014, 450, 162-173.	8.2	90
30	Co-deposition towards mussel-inspired antifouling and antibacterial membranes by using zwitterionic polymers and silver nanoparticles. Journal of Materials Chemistry B, 2017, 5, 7186-7193.	5.8	89
31	Heparinâ€Like Macromolecules for the Modification of Anticoagulant Biomaterials. Macromolecular Bioscience, 2012, 12, 116-125.	4.1	88
32	Evaluation of polyethersulfone highflux hemodialysis membrane inÂvitro and inÂvivo. Journal of Materials Science: Materials in Medicine, 2008, 19, 745-751.	3.6	87
33	Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. Acta Biomaterialia, 2017, 51, 479-494.	8.3	87
34	Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility. Colloids and Surfaces B: Biointerfaces, 2013, 110, 15-21.	5.0	86
35	Substrate-Independent Ag-Nanoparticle-Loaded Hydrogel Coating with Regenerable Bactericidal and Thermoresponsive Antibacterial Properties. ACS Applied Materials & Interfaces, 2017, 9, 44782-44791.	8.0	85
36	Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry. Acta Biomaterialia, 2016, 40, 162-171.	8.3	84

#	Article	IF	CITATIONS
37	Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes. Carbohydrate Polymers, 2018, 187, 85-93.	10.2	84
38	Toward highly blood compatible hemodialysis membranes via blending with heparin-mimicking polyurethane: Study in vitro and in vivo. Journal of Membrane Science, 2014, 470, 90-101.	8.2	81
39	Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking. ACS Applied Materials & Interfaces, 2015, 7, 26050-26062.	8.0	81
40	lonic-Strength Responsive Zwitterionic Copolymer Hydrogels with Tunable Swelling and Adsorption Behaviors. Langmuir, 2019, 35, 1146-1155.	3.5	81
41	Salt-mediated triple shape-memory ionic conductive polyampholyte hydrogel for wearable flexible electronics. Journal of Materials Chemistry A, 2021, 9, 1048-1061.	10.3	78
42	Biologically inspired membrane design with a heparin-like interface: prolonged blood coagulation, inhibited complement activation, and bio-artificial liver related cell proliferation. Biomaterials Science, 2014, 2, 98-109.	5.4	77
43	Graphene oxide based heparin-mimicking and hemocompatible polymeric hydrogels for versatile biomedical applications. Journal of Materials Chemistry B, 2015, 3, 592-602.	5.8	76
44	Heparin-Mimicking Multilayer Coating on Polymeric Membrane via LbL Assembly of Cyclodextrin-Based Supramolecules. ACS Applied Materials & Interfaces, 2014, 6, 21603-21614.	8.0	75
45	Functionalized polyethersulfone nanofibrous membranes with ultra-high adsorption capacity for organic dyes by one-step electrospinning. Journal of Colloid and Interface Science, 2019, 533, 526-538.	9.4	75
46	Heparin-like surface modification of polyethersulfone membrane and its biocompatibility. Journal of Colloid and Interface Science, 2012, 386, 428-440.	9.4	74
47	Covalent Deposition of Zwitterionic Polymer and Citric Acid by Click Chemistry-Enabled Layer-by-Layer Assembly for Improving the Blood Compatibility of Polysulfone Membrane. Langmuir, 2014, 30, 5115-5125.	3.5	74
48	Nanofibrous Heparin and Heparin-Mimicking Multilayers as Highly Effective Endothelialization and Antithrombogenic Coatings. Biomacromolecules, 2015, 16, 992-1001.	5.4	74
49	Metalâ€Phenolic Networks Nanoplatform to Mimic Antioxidant Defense System for Broadâ€Spectrum Radical Eliminating and Endotoxemia Treatment. Advanced Functional Materials, 2020, 30, 2002234.	14.9	74
50	Surface-engineered nanogel assemblies with integrated blood compatibility, cell proliferation and antibacterial property: towards multifunctional biomedical membranes. Polymer Chemistry, 2014, 5, 5906-5919.	3.9	73
51	Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP. Journal of Colloid and Interface Science, 2014, 432, 47-56.	9.4	70
52	lonic-strength-sensitive polyethersulfone membrane with improved anti-fouling property modified by zwitterionic polymer via in situ cross-linked polymerization. Journal of Membrane Science, 2015, 476, 234-242.	8.2	70
53	Design of Carrageenan-Based Heparin-Mimetic Gel Beads as Self-Anticoagulant Hemoperfusion Adsorbents. Biomacromolecules, 2018, 19, 1966-1978.	5.4	70
54	Codeposition of Polydopamine and Zwitterionic Polymer on Membrane Surface with Enhanced Stability and Antibiofouling Property. Langmuir, 2019, 35, 1430-1439.	3.5	70

#	Article	IF	CITATIONS
55	Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification. Journal of Hazardous Materials, 2016, 318, 255-265.	12.4	69
56	Biomimetic micro/nano structures for biomedical applications. Nano Today, 2020, 35, 100980.	11.9	69
57	Host–Guest Self-Assembly Toward Reversible Thermoresponsive Switching for Bacteria Killing and Detachment. ACS Applied Materials & Interfaces, 2016, 8, 23523-23532.	8.0	68
58	Heparin-mimicking polyethersulfone membranes – hemocompatibility, cytocompatibility, antifouling and antibacterial properties. Journal of Membrane Science, 2016, 498, 135-146.	8.2	68
59	Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. Journal of Materials Chemistry B, 2016, 4, 3203-3215.	5.8	67
60	Aramid nanofiber as an emerging nanofibrous modifier to enhance ultrafiltration and biological performances of polymeric membranes. Journal of Membrane Science, 2017, 528, 251-263.	8.2	65
61	A pH-induced self-healable shape memory hydrogel with metal-coordination cross-links. Polymer Chemistry, 2019, 10, 1920-1929.	3.9	64
62	Integrating zwitterionic polymer and Ag nanoparticles on polymeric membrane surface to prepare antifouling and bactericidal surface via Schiff-based layer-by-layer assembly. Journal of Colloid and Interface Science, 2018, 510, 308-317.	9.4	63
63	Poly (methyl methacrylate–acrylic acid–vinyl pyrrolidone) terpolymer modified polyethersulfone hollow fiber membrane with pH sensitivity and protein antifouling property. Journal of Membrane Science, 2010, 358, 76-84.	8.2	62
64	Remarkable pH-sensitivity and anti-fouling property of terpolymer blended polyethersulfone hollow fiber membranes. Journal of Membrane Science, 2011, 378, 369-381.	8.2	62
65	Mussel-inspired chitosan-polyurethane coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes. Carbohydrate Polymers, 2017, 168, 310-319.	10.2	62
66	Nanofibrous membranes with surface migration of functional groups for ultrafast wastewater remediation. Journal of Materials Chemistry A, 2018, 6, 13359-13372.	10.3	60
67	Layer by layer assembly of sulfonic poly(ether sulfone) as heparin-mimicking coatings: scalable fabrication of super-hemocompatible and antibacterial membranes. Journal of Materials Chemistry B, 2015, 3, 1391-1404.	5.8	58
68	Recent progresses in graphene based bio-functional nanostructures for advanced biological and cellular interfaces. Nano Today, 2019, 26, 57-97.	11.9	58
69	Bioinspired 3D Multilayered Shape Memory Scaffold with a Hierarchically Changeable Micropatterned Surface for Efficient Vascularization. ACS Applied Materials & Interfaces, 2017, 9, 19725-19735.	8.0	56
70	Self-assembled 3D biocompatible and bioactive layer at the macro-interface via graphene-based supermolecules. Polymer Chemistry, 2014, 5, 3563.	3.9	55
71	Catechol Chemistry Inspired Approach to Construct Self-Cross-Linked Polymer Nanolayers as Versatile Biointerfaces. Langmuir, 2014, 30, 14905-14915.	3.5	54
72	Dual-functional polyethersulfone composite nanofibrous membranes with synergistic adsorption and photocatalytic degradation for organic dyes. Composites Science and Technology, 2020, 199, 108353.	7.8	54

#	Article	IF	CITATIONS
73	Transient blood thinning during extracorporeal blood purification via the inactivation of coagulation factors by hydrogel microspheres. Nature Biomedical Engineering, 2021, 5, 1143-1156.	22.5	54
74	Blood activation and compatibility on single-molecular-layer biointerfaces. Journal of Materials Chemistry B, 2014, 2, 4911-4921.	5.8	53
75	Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate. Langmuir, 2015, 31, 9665-9674.	3.5	53
76	Engineering of Tannic Acid Inspired Antifouling and Antibacterial Membranes through Co-deposition of Zwitterionic Polymers and Ag Nanoparticles. Industrial & Engineering Chemistry Research, 2019, 58, 11689-11697.	3.7	52
77	Surface modification of polyethersulfone membranes by blending triblock copolymers of methoxyl poly(ethylene glycol)–polyurethane–methoxyl poly(ethylene glycol). Colloids and Surfaces B: Biointerfaces, 2011, 88, 315-324.	5.0	51
78	Preparation of polyethersulfone-modified sepiolite hybrid particles for the removal of environmental toxins. Chemical Engineering Journal, 2011, 171, 1132-1142.	12.7	51
79	Zwitterionic glycosyl modified polyethersulfone membranes with enhanced anti-fouling property and blood compatibility. Journal of Colloid and Interface Science, 2015, 443, 36-44.	9.4	51
80	Blood compatibility of polyethersulfone membrane by blending a sulfated derivative of chitosan. Carbohydrate Polymers, 2013, 95, 64-71.	10.2	50
81	Improved Antifouling Property of Polyethersulfone Hollow Fiber Membranes Using Additive of Poly(ethylene glycol) Methyl Ether- <i>b</i> -Poly(styrene) Copolymers. Industrial & Engineering Chemistry Research, 2011, 50, 3295-3303.	3.7	49
82	One-pot cross-linked copolymerization for the construction of robust antifouling and antibacterial composite membranes. Journal of Materials Chemistry B, 2015, 3, 4170-4180.	5.8	49
83	A facile approach towards amino-coated polyethersulfone particles for the removal of toxins. Journal of Colloid and Interface Science, 2017, 485, 39-50.	9.4	49
84	Graphene oxide interpenetrated polymeric composite hydrogels as highly effective adsorbents for water treatment. RSC Advances, 2014, 4, 42346-42357.	3.6	48
85	Multifunctional Thermoplastic Polyurea Based on the Synergy of Dynamic Disulfide Bonds and Hydrogen Bond Cross-Links. ACS Applied Materials & Interfaces, 2021, 13, 1463-1473.	8.0	48
86	A recyclable and regenerable magnetic chitosan absorbent for dye uptake. Carbohydrate Polymers, 2016, 150, 201-208.	10.2	47
87	Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal. Biomaterials Science, 2016, 4, 1392-1401.	5.4	47
88	A bioinspired strategy towards super-adsorbent hydrogel spheres <i>via</i> self-sacrificing micro-reactors for robust wastewater remediation. Journal of Materials Chemistry A, 2019, 7, 21386-21403.	10.3	46
89	Antibacterial and anti-biofouling coating on hydroxyapatite surface based on peptide-modified tannic acid. Colloids and Surfaces B: Biointerfaces, 2017, 160, 136-143.	5.0	45
90	Mussel-inspired post-heparinization of a stretchable hollow hydrogel tube and its potential application as an artificial blood vessel. Polymer Chemistry, 2017, 8, 2266-2275.	3.9	44

#	Article	IF	CITATIONS
91	A chitosan modified asymmetric small-diameter vascular graft with anti-thrombotic and anti-bacterial functions for vascular tissue engineering. Journal of Materials Chemistry B, 2020, 8, 568-577.	5.8	44
92	Graphene oxide and sulfonated polyanion co-doped hydrogel films for dual-layered membranes with superior hemocompatibility and antibacterial activity. Biomaterials Science, 2016, 4, 1431-1440.	5.4	43
93	Reinforced-Concrete Structured Hydrogel Microspheres with Ultrahigh Mechanical Strength, Restricted Water Uptake, and Superior Adsorption Capacity. ACS Sustainable Chemistry and Engineering, 2018, 6, 5950-5958.	6.7	43
94	Positively-charged polyethersulfone nanofibrous membranes for bacteria and anionic dyes removal. Journal of Colloid and Interface Science, 2019, 556, 492-502.	9.4	43
95	Preparation of porous polysulfone beads for selective removal of endocrine disruptors. Separation and Purification Technology, 2004, 40, 297-302.	7.9	42
96	Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria. Journal of Materials Science and Technology, 2021, 78, 131-143.	10.7	42
97	A facile way to prepare anti-fouling and blood-compatible polyethersulfone membrane via blending with heparin-mimicking polyurethanes. Materials Science and Engineering C, 2017, 78, 1035-1045.	7.3	41
98	Ag-nanogel blended polymeric membranes with antifouling, hemocompatible and bactericidal capabilities. Journal of Materials Chemistry B, 2015, 3, 9295-9304.	5.8	40
99	In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying. ACS Applied Materials & Interfaces, 2015, 7, 4202-4215.	8.0	40
100	A self-cleaning zwitterionic nanofibrous membrane for highly efficient oil-in-water separation. Science of the Total Environment, 2020, 729, 138876.	8.0	40
101	Toward robust pH-responsive and anti-fouling composite membranes via one-pot in-situ cross-linked copolymerization. Desalination, 2014, 349, 80-93.	8.2	39
102	Heparin-Like Chitosan Hydrogels with Tunable Swelling Behavior, Prolonged Clotting Times, and Prevented Contact Activation and Complement Activation. Biomacromolecules, 2016, 17, 4011-4020.	5.4	39
103	Mussel-inspired coatings on Ag nanoparticle-conjugated carbon nanotubes: bactericidal activity and mammal cell toxicity. Journal of Materials Chemistry B, 2016, 4, 2749-2756.	5.8	39
104	Self-Anticoagulant Nanocomposite Spheres for the Removal of Bilirubin from Whole Blood: A Step toward a Wearable Artificial Liver. Biomacromolecules, 2020, 21, 1762-1775.	5.4	38
105	Photoresponsive Surface Molecularly Imprinted Poly(ether sulfone) Microfibers. Langmuir, 2012, 28, 13284-13293.	3.5	37
106	Toward safe, efficient and multifunctional 3D blood-contact adsorbents engineered by biopolymers/graphene oxide gels. RSC Advances, 2013, 3, 22120.	3.6	37
107	Anticoagulant chitosan-kappa-carrageenan composite hydrogel sorbent for simultaneous endotoxin and bacteria cleansing in septic blood. Carbohydrate Polymers, 2020, 243, 116470.	10.2	37
108	Mussel-Inspired Antibacterial and Biocompatible Silver–Carbon Nanotube Composites: Green and Universal Nanointerfacial Functionalization. Langmuir, 2016, 32, 5955-5965.	3.5	36

#	Article	IF	CITATIONS
109	A versatile approach towards multi-functional surfaces via covalently attaching hydrogel thin layers. Journal of Colloid and Interface Science, 2016, 484, 60-69.	9.4	36
110	Improved antifouling and antimicrobial efficiency of ultrafiltration membranes with functional carbon nanotubes. RSC Advances, 2016, 6, 88265-88276.	3.6	36
111	Hexanediamine functionalized poly (glycidyl methacrylate-co-N-vinylpyrrolidone) particles for bilirubin removal. Journal of Colloid and Interface Science, 2017, 504, 214-222.	9.4	36
112	Surface engineering of low-fouling and hemocompatible polyethersulfone membranes via in-situ ring-openingâ€,reaction. Journal of Membrane Science, 2019, 581, 373-382.	8.2	36
113	A facile approach toward multi-functional polyurethane/polyethersulfone composite membranes for versatile applications. Materials Science and Engineering C, 2016, 59, 556-564.	7.3	35
114	Bidirectionally pH-Responsive Zwitterionic Polymer Hydrogels with Switchable Selective Adsorption Capacities for Anionic and Cationic Dyes. Industrial & Engineering Chemistry Research, 2018, 57, 8209-8219.	3.7	35
115	Biocompatible graphene-based nanoagent with NIR and magnetism dual-responses for effective bacterial killing and removal. Colloids and Surfaces B: Biointerfaces, 2019, 173, 266-275.	5.0	35
116	Biomimetic Microstructured Hydrogels with Thermal-Triggered Switchable Underwater Adhesion and Stable Antiswelling Property. ACS Applied Materials & Interfaces, 2021, 13, 36574-36586.	8.0	34
117	Poly(ether sulfone)/activated carbon hybrid beads for creatinine adsorption. Journal of Applied Polymer Science, 2007, 103, 1085-1092.	2.6	33
118	Preparation and characterization of modified polyethersulfone hollow fiber membranes by blending poly (styrene-alt-maleic anhydride). Desalination, 2012, 295, 26-34.	8.2	33
119	Engineering of hemocompatible and antifouling polyethersulfone membranes by blending with heparin-mimicking microgels. Biomaterials Science, 2017, 5, 1112-1121.	5.4	33
120	Multi-responsive, tough and reversible hydrogels with tunable swelling property. Journal of Hazardous Materials, 2017, 322, 499-507.	12.4	33
121	Multifunctional negatively-charged poly (ether sulfone) nanofibrous membrane for water remediation. Journal of Colloid and Interface Science, 2019, 538, 648-659.	9.4	33
122	Superhydrophilic and polyporous nanofibrous membrane with excellent photocatalytic activity and recyclability for wastewater remediation under visible light irradiation. Chemical Engineering Journal, 2022, 427, 131685.	12.7	33
123	From Commodity Polymers to Functional Polymers. Scientific Reports, 2014, 4, 4604.	3.3	32
124	Engineering polyethersulfone hollow fiber membrane with improved blood compatibility and antibacterial property. Colloid and Polymer Science, 2016, 294, 441-453.	2.1	32
125	Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. Polymer Chemistry, 2020, 11, 4355-4381.	3.9	32
126	Super-Anticoagulant Heparin-Mimicking Hydrogel Thin Film Attached Substrate Surfaces to Improve Hemocompatibility. Macromolecular Bioscience, 2017, 17, 1600281.	4.1	31

#	Article	IF	CITATIONS
127	A green approach towards functional hydrogel particles from synthetic polymers via spherical capsule mini-reactors. Chemical Engineering Journal, 2019, 359, 1360-1371.	12.7	31
128	Interfacial Self-Assembly of Heparin-Mimetic Multilayer on Membrane Substrate as Effective Antithrombotic, Endothelialization, and Antibacterial Coating. ACS Biomaterials Science and Engineering, 2015, 1, 1183-1193.	5.2	30
129	In vitro and in vivo anticoagulant activity of heparin-like biomacromolecules and the mechanism analysis for heparin-mimicking activity. International Journal of Biological Macromolecules, 2019, 122, 784-792.	7.5	30
130	Biomimetic Microstructured Antifatigue Fracture Hydrogel Sensor for Human Motion Detection with Enhanced Sensing Sensitivity. ACS Applied Materials & amp; Interfaces, 2022, 14, 27371-27382.	8.0	30
131	Design of anion species/strength responsive membranes via in-situ cross-linked copolymerization of ionic liquids. Journal of Membrane Science, 2017, 535, 158-167.	8.2	29
132	A mussel-inspired approach towards heparin-immobilized cellulose gel beads for selective removal of low density lipoprotein from whole blood. Carbohydrate Polymers, 2018, 202, 116-124.	10.2	29
133	Highly hemo-compatible, mechanically strong, and conductive dual cross-linked polymer hydrogels. Journal of Materials Chemistry B, 2016, 4, 8016-8024.	5.8	28
134	Functional polyethersulfone particles for the removal of bilirubin. Journal of Materials Science: Materials in Medicine, 2016, 27, 28.	3.6	28
135	Modification of polyethersulfone membranes using terpolymers engineered and integrated antifouling and anticoagulant properties. Polymers for Advanced Technologies, 2013, 24, 1040-1050.	3.2	27
136	Graphene oxide linked sulfonate-based polyanionic nanogels as biocompatible, robust and versatile modifiers of ultrafiltration membranes. Journal of Materials Chemistry B, 2016, 4, 6143-6153.	5.8	27
137	Direct catechol conjugation of mussel-inspired biomacromolecule coatings to polymeric membranes with antifouling properties, anticoagulant activity and cytocompatibility. Journal of Materials Chemistry B, 2017, 5, 3035-3046.	5.8	27
138	Introducing multiple bio-functional groups on the poly(ether sulfone) membrane substrate to fabricate an effective antithrombotic bio-interface. Biomaterials Science, 2017, 5, 2416-2426.	5.4	27
139	Hemocompatible magnetic particles with broad-spectrum bacteria capture capability for blood purification. Journal of Colloid and Interface Science, 2020, 576, 1-9.	9.4	27
140	Photoenhanced Dual-Functional Nanomedicine for Promoting Wound Healing: Shifting Focus from Bacteria Eradication to Host Microenvironment Modulation. ACS Applied Materials & Interfaces, 2021, 13, 32316-32331.	8.0	27
141	Preparation and characterization of pH- and thermoâ€sensitive polyethersulfone hollow fiber membranes modified with P(NIPAAm-MAA-MMA) terpolymer. Desalination, 2013, 309, 1-10.	8.2	26
142	A polyethersulfone composite ultrafiltration membrane with the in-situ generation of CdS nanoparticles for the effective removal of organic pollutants and photocatalytic self-cleaning. Journal of Membrane Science, 2021, 638, 119715.	8.2	26
143	A facile approach towards amino-coated ferroferric oxide nanoparticles for environmental pollutant removal. Journal of Colloid and Interface Science, 2018, 513, 647-657.	9.4	25
144	Salt-responsive polyampholyte-based hydrogel actuators with gradient porous structures. Polymer Chemistry, 2021, 12, 670-679.	3.9	25

#	Article	IF	CITATIONS
145	Poly(ether sulfone) membranes with photo-responsive permeability. Journal of Membrane Science, 2014, 455, 357-367.	8.2	24
146	Facile chemical modification of polysulfone membrane with improved hydrophilicity and blood compatibility. Materials Letters, 2014, 137, 192-195.	2.6	24
147	Robust, highly elastic and bioactive heparin-mimetic hydrogels. Polymer Chemistry, 2015, 6, 7893-7901.	3.9	24
148	A body temperature and water-induced shape memory hydrogel with excellent mechanical properties. Polymer Chemistry, 2019, 10, 3488-3496.	3.9	24
149	A near-infrared light-triggered shape-memory polymer for long-time fluorescence imaging in deep tissues. Journal of Materials Chemistry B, 2020, 8, 8061-8070.	5.8	24
150	Vapor induced phase separation towards anion-/near-infrared-responsive pore channels for switchable anti-fouling membranes. Journal of Materials Chemistry A, 2020, 8, 8934-8948.	10.3	24
151	Insights into the surface property and blood compatibility of polyethersulfone/polyvinylpyrrolidone composite membranes: toward high-performance hemodialyzer. Polymers for Advanced Technologies, 2014, 25, 851-860.	3.2	23
152	A robust way to prepare blood-compatible and anti-fouling polyethersulfone membrane. Colloids and Surfaces B: Biointerfaces, 2016, 146, 326-333.	5.0	23
153	Extracorporeal hemoperfusion therapy for sepsis: Multi-lamellar microspheres towards cascade endotoxin removal and broad-spectrum radical eliminating. Chemical Engineering Journal, 2022, 444, 136499.	12.7	23
154	Poly(Acrylic Acid-co-Acrylonitrile) Copolymer Modified Polyethersulfone Hollow Fiber Membrane with pH-Sensitivity. Separation Science and Technology, 2010, 45, 2017-2027.	2.5	22
155	Inflammation-responsive self-regulated drug release from ultrathin hydrogel coating. Colloids and Surfaces B: Biointerfaces, 2017, 158, 518-526.	5.0	22
156	Photo-responsive membrane surface: Switching from bactericidal to bacteria-resistant property. Materials Science and Engineering C, 2018, 84, 52-59.	7.3	22
157	A template-hatched method towards poly(acrylic acid) hydrogel spheres with ultrahigh ion exchange capacity and robust adsorption of environmental toxins. Journal of Industrial and Engineering Chemistry, 2019, 69, 422-431.	5.8	22
158	Preparation, characterization and application of poly(sodium p-styrenesulfonate)/poly(methyl) Tj ETQq0 0 0 rgBT	Overloc	۲ 10 Tf 50 22 21
159	Rationally designed magnetic nanoparticles as anticoagulants for blood purification. Colloids and Surfaces B: Biointerfaces, 2018, 164, 316-323.	5.0	21
160	Mussel-Inspired and <i>In Situ</i> Polymerization-Modified Commercial Sponge for Efficient Crude Oil and Organic Solvent Adsorption. ACS Applied Materials & amp; Interfaces, 2022, 14, 2663-2673.	8.0	21
161	In Situ Cross-Linked Polymerization toward Poly(ether sulfone)/Poly(sodium acrylate) Hybrid Particles for the Removal of Environmental Toxins. Industrial & Engineering Chemistry Research, 2014, 53, 14084-14093.	3.7	20
162	A self-defensive bilayer hydrogel coating with bacteria triggered switching from cell adhesion to	3.9	20

#	Article	IF	CITATIONS
163	One-step electrospinning of negatively-charged polyethersulfone nanofibrous membranes for selective removal of cationic dyes. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 179-188.	5.3	20
164	Design of Robust Thermal and Anion Dual-Responsive Membranes with Switchable Response Temperature. ACS Applied Materials & Interfaces, 2018, 10, 36443-36455.	8.0	20
165	Comparison of pH-sensitivity between two copolymer modified polyethersulfone hollow fiber membranes. Desalination, 2011, 280, 152-159.	8.2	19
166	Comparison of surface segregation and anticoagulant property in block copolymer blended evaporation and phase inversion membranes. Surface and Interface Analysis, 2012, 44, 819-824.	1.8	19
167	Ionic strength- and thermo-responsive polyethersulfone composite membranes with enhanced antifouling properties. New Journal of Chemistry, 2018, 42, 5323-5333.	2.8	19
168	Engineering antimicrobial and biocompatible electrospun PLGA fibrous membranes by irradiation grafting polyvinylpyrrolidone and periodate. Colloids and Surfaces B: Biointerfaces, 2019, 181, 918-926.	5.0	19
169	Precipitated droplets in-situ cross-linking polymerization towards hydrogel beads for ultrahigh removal of positively charged toxins. Separation and Purification Technology, 2020, 238, 116497.	7.9	19
170	DNA-loaded porous polyethersulfone particles for environmental applications I. preparation. Journal of Applied Polymer Science, 2005, 98, 1668-1673.	2.6	18
171	Design of carboxymethyl chitosan-based heparin-mimicking cross-linked beads for safe and efficient blood purification. International Journal of Biological Macromolecules, 2018, 117, 392-400.	7.5	18
172	Construction of microgels embedded robust ultrafiltration membranes for highly effective bioadhesion resistance. Colloids and Surfaces B: Biointerfaces, 2016, 139, 199-210.	5.0	17
173	Constructing porous channels in superhydrophilic polyethersulfone composite nanofibrous membranes for sustainably enhanced photocatalytic activities in wastewater remediation. Composites Science and Technology, 2021, 214, 108993.	7.8	17
174	Long-term, synergistic and high-efficient antibacterial polyacrylonitrile nanofibrous membrane prepared by "one-pot―electrospinning process. Journal of Colloid and Interface Science, 2022, 609, 718-733.	9.4	17
175	Core@shell poly (acrylic acid) microgels/polyethersulfone beads for dye uptake from wastewater. Journal of Environmental Chemical Engineering, 2017, 5, 1732-1743.	6.7	16
176	Three-Dimensional Graphene Oxide Skeleton Guided Poly(acrylic Acid) Composite Hydrogel Particles with Hierarchical Pore Structure for Hemoperfusion. ACS Biomaterials Science and Engineering, 2019, 5, 3987-4001.	5.2	16
177	Urease-Immobilized Magnetic Graphene Oxide as a Safe and Effective Urea Removal Recyclable Nanocatalyst for Blood Purification. Industrial & Engineering Chemistry Research, 2020, 59, 8955-8964.	3.7	16
178	"1+1>2― Highly efficient removal of organic pollutants by composite nanofibrous membrane based on the synergistic effect of adsorption and photocatalysis. Journal of Materials Science and Technology, 2022, 124, 76-85.	10.7	16
179	Highly swellable and biocompatible graphene/heparin-analogue hydrogels for implantable drug and protein delivery. RSC Advances, 2016, 6, 71893-71904.	3.6	15
180	Synergetic effect of topological cue and periodic mechanical tension-stress on osteogenic differentiation of rat bone mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2017, 154, 1-9.	5.0	15

#	Article	IF	CITATIONS
181	Post-functionalization of carboxylic polyethersulfone composite membranes. Composites Science and Technology, 2018, 156, 48-60.	7.8	14
182	Multifunctionalized polyethersulfone membranes with networked submicrogels to improve antifouling property, antibacterial adhesion and blood compatibility. Materials Science and Engineering C, 2019, 96, 402-411.	7.3	14
183	Poly (vinylpyrrolidone-co-acrylonitrile-co-vinylpyrrolidone) modified polyethersulfone hollow fiber membranes with improved blood compatibility. Fibers and Polymers, 2012, 13, 269-276.	2.1	13
184	An in situ crosslinking approach towards chitosan-based semi-IPN hybrid particles for versatile adsorptions of toxins. RSC Advances, 2015, 5, 51631-51641.	3.6	13
185	Root-soil structure inspired hydrogel microspheres with high dimensional stability and anion-exchange capacity. Journal of Colloid and Interface Science, 2018, 532, 680-688.	9.4	13
186	Rationally designed magnetic poly(catechol-hexanediamine) particles for bacteria removal and on-demand biofilm eradication. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110728.	5.0	13
187	Antifouling and bloodâ€compatible poly(ether sulfone) membranes modified by zwitterionic copolymers via <i>In situ</i> crosslinked copolymerization. Journal of Applied Polymer Science, 2015, 132, .	2.6	12
188	A facile and high-efficiency strategy towards instantaneous clean-up of positively-charged microcontaminants by regenerative carboxylated sponge. Chemical Engineering Journal, 2020, 388, 124301.	12.7	12
189	Excellent biocompatible polymeric membranes prepared via layerâ€byâ€layer selfâ€assembly. Journal of Applied Polymer Science, 2015, 132, .	2.6	11
190	Graphene oxide-based polyethersulfone core–shell particles for dye uptake. RSC Advances, 2016, 6, 102389-102397.	3.6	11
191	Green Fabrication of Tannic Acid-Inspired Magnetic Composite Nanoparticles toward Cationic Dye Capture and Selective Degradation. ACS Omega, 2020, 5, 6566-6575.	3.5	11
192	Amides and Heparinâ€Like Polymer Coâ€Functionalized Graphene Oxide Based Core @ Polyethersulfone Based Shell Beads for Bilirubin Adsorption. Macromolecular Bioscience, 2020, 20, e2000153.	4.1	11
193	Hemocompatibility enhancement of polyethersulfone membranes: Strategies and challenges. , 2021, 1, 100013.		11
194	Effect of membrane pore size on the pHâ€sensitivity of polyethersulfone hollow fiber ultrafiltration membrane. Journal of Applied Polymer Science, 2012, 123, 2320-2329.	2.6	10
195	Redox-responsive polymeric membranes via supermolecular host–guest interactions. Journal of Membrane Science, 2015, 480, 139-152.	8.2	10
196	Semi-interpenetrating polymer network microspheres with superior dimensional stability as multifunctional antibacterial adsorbent materials. Journal of Environmental Chemical Engineering, 2019, 7, 103393.	6.7	10
197	Urease immobilized GO core@shell heparin-mimicking polymer beads with safe and effective urea removal for blood purification. International Journal of Biological Macromolecules, 2020, 156, 1503-1511.	7.5	10
198	Preparation and Characterization of pH-Sensitive Polyethersulfone Membranes Blended with Poly(methyl methacrylate- <i>co</i> -maleic anhydride) Copolymer. Separation Science and Technology, 2013, 48, 1941-1953.	2.5	9

#	Article	IF	CITATIONS
199	Preparation and Characterization of Poly(Acrylonitrile- <i>co</i> -Maleic Anhydride) Copolymer Modified Polyethersulfone Membranes. Separation Science and Technology, 2013, 48, 1627-1635.	2.5	8
200	Improved antifouling properties and blood compatibility of 3-methacryloxypropyl trimethoxysilane – based zwitterionic copolymer modified composite membranes via in situ post-crosslinking copolymerization. RSC Advances, 2015, 5, 23229-23238.	3.6	8
201	Lightâ€induced dynamically tunable micropatterned surface for the regulation of the endothelial cell alignment. Biosurface and Biotribology, 2019, 5, 46-51.	1.5	8
202	One-pot synthesis of highly hemocompatible polyurethane/polyethersulfone composite membranes. Polymer Bulletin, 2017, 74, 3797-3818.	3.3	6
203	Chondroitin-analogue decorated magnetic nanoparticles <i>via</i> a click reaction for selective adsorption of low-density lipoprotein. Polymer Chemistry, 2019, 10, 2540-2550.	3.9	6
204	Precipitated droplets in-situ cross-linking polymerization and its applications. Polymer Testing, 2020, 91, 106756.	4.8	6
205	Enzymeâ€based hydrogels containing dextran as drug delivery carriers: Preparation, characterization, and protein release. Journal of Applied Polymer Science, 2009, 113, 3944-3953.	2.6	5
206	Bioinspired Polyethersulfone Membrane Design via Blending with Functional Polyurethane. International Journal of Polymer Science, 2017, 2017, 1-10.	2.7	4
207	Clearance of methylene blue by CdS enhanced composite hydrogel materials. Environmental Technology (United Kingdom), 2022, 43, 355-366.	2.2	3
208	Immune-stealth carboxymethyl chitosan-based nanomaterials for magnetic resonance imaging-guided photothermal therapy. Carbohydrate Polymers, 2022, 288, 119382.	10.2	3