Steven Driese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8325042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Buttermilk Creek Complex and the Origins of Clovis at the Debra L. Friedkin Site, Texas. Science, 2011, 331, 1599-1603.	12.6	204
2	Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Research, 2011, 189, 1-17.	2.7	121
3	Mass-balance reconstruction of a modern Vertisol: implications for interpreting the geochemistry and burial alteration of paleo-Vertisols. Geoderma, 2000, 95, 179-204.	5.1	96
4	Paleopedology and Paleohydrology of a Volcaniclastic Paleosol Interval: Implications for Early Pleistocene Stratigraphy and Paleoclimate Record, Olduvai Gorge, Tanzania. Journal of Sedimentary Research, 2000, 70, 1065-1080.	1.6	88
5	Sedimentation and recent history of a freshwater wetland in a semi-arid environment: Loboi Swamp, Kenya, East Africa. Sedimentology, 2004, 51, 1301-1321.	3.1	88
6	Paleopedologic and Paleohydrologic Records of Precipitation Seasonality from Early Pennsylvanian "Underclay" Paleosols, U.S.A Journal of Sedimentary Research, 2005, 75, 997-1010.	1.6	85
7	Pedogenic iron-manganese nodules in Vertisols: A new proxy for paleoprecipitation?. Geology, 2001, 29, 943.	4.4	82
8	Paleoenvironmental context of the Middle Stone Age record from Karungu, Lake Victoria Basin, Kenya, and its implications for human and faunal dispersals in East Africa. Journal of Human Evolution, 2015, 83, 28-45.	2.6	76
9	Vertisol Carbonate Properties in Relation to Mean Annual Precipitation: Implications for Paleoprecipitation Estimates. Journal of Geology, 2006, 114, 501-510.	1.4	72
10	Pedogenic processes and domain boundaries in a Vertisol climosequence: evidence from titanium and zirconium distribution and morphology. Geoderma, 2003, 116, 279-299.	5.1	69
11	Serpentine Hot Springs, Alaska: results of excavations and implications for the age and significance of northern fluted points. Journal of Archaeological Science, 2013, 40, 4222-4233.	2.4	67
12	Distinguishing Climate in the Soil Record Using Chemical Trends in a Vertisol Climosequence from the Texas Coast Prairie, and Application to Interpreting Paleozoic Paleosols in the Appalachian Basin, U.S.A Journal of Sedimentary Research, 2005, 75, 339-349.	1.6	65
13	The Pleistocene prehistory of the Lake Victoria basin. Quaternary International, 2016, 404, 100-114.	1.5	65
14	Pre-colonial (A.D. 1100–1600) sedimentation related to prehistoric maize agriculture and climate change in eastern North America. Geology, 2011, 39, 363-366.	4.4	55
15	Micro-scale analysis of tree-ring δ18O and δ13C on α-cellulose spline reveals high-resolution intra-annual climate variability and tropical cyclone activity. Chemical Geology, 2011, 284, 138-147.	3.3	52
16	Pedogenic Translocation of Fe in Modern and Ancient Vertisols and Implications for Interpretations of the Hekpoort Paleosol (2.25 Ga). Journal of Geology, 2004, 112, 543-560.	1.4	51
17	Lithologic and Pedogenic Influences on Porosity Distribution and Groundwater Flow in Fractured Sedimentary Saprolite: A New Application of Environmental Sedimentology. Journal of Sedimentary Research, 2001, 71, 843-857.	1.6	48
18	Differentiating Pedogenesis from Diagenesis in Early Terrestrial Paleoweathering Surfaces Formed on Granitic Composition Parent Materials. Journal of Geology, 2007, 115, 387-406.	1.4	48

#	Article	IF	CITATIONS
19	ENVIRONMENTAL AND ECOLOGICAL VARIABILITY OF MIDDLE DEVONIAN (GIVETIAN) FORESTS IN APPALACHIAN BASIN PALEOSOLS, NEW YORK, UNITED STATES. Palaios, 2010, 25, 85-96.	1.3	45
20	Comparison of modern and ancient Vertisols developed on limestone in terms of their geochemistry and parent material. Sedimentary Geology, 2003, 157, 49-69.	2.1	44
21	Possible Late Holocene equatorial palaeoclimate record based upon soils spanning the Medieval Warm Period and Little Ice Age, Loboi Plain, Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 213, 231-250.	2.3	43
22	Latest Miocene to earliest Pliocene sedimentation and climate record derived from paleosinkhole fill deposits, Gray Fossil Site, northeastern Tennessee, U.S.A Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 231, 265-278.	2.3	41
23	Sites on the landscape: Paleoenvironmental context of late Pleistocene archaeological sites from the Lake Victoria basin, equatorial East Africa. Quaternary International, 2014, 331, 20-30.	1.5	40
24	An oxygen isotope study of illite and calcite in three Appalachian Paleozoic vertic Paleosols. Journal of Sedimentary Research, 1998, 68, 456-464.	1.6	39
25	A data-driven spline model designed to predict paleoclimate using paleosol geochemistry. Numerische Mathematik, 2016, 316, 746-777.	1.4	39
26	Control of terrestrial stabilization on Late Devonian palustrine carbonate deposition; Catskill Magnafacies, New York, U.S.A Journal of Sedimentary Research, 1999, 69, 772-783.	1.6	38
27	Isotopic variability in large carbonate nodules in Vertisols: Implications for climate and ecosystem assessments. Geoderma, 2007, 142, 104-111.	5.1	36
28	A modern soil characterization approach to reconstructing physical and chemical properties of paleo-Vertisols. Numerische Mathematik, 2010, 310, 37-64.	1.4	36
29	Paleopedology and geochemistry of Late Mississippian (Chesterian) Pennington Formation paleosols at Pound Gap, Kentucky, USA: Implications for high-frequency climate variations. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 259, 357-381.	2.3	35
30	Paleosols and paleoenvironments of the early Miocene deposits near Karungu, Lake Victoria, Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443, 167-182.	2.3	35
31	Hydrogeology and pedology of saprolite formed from sedimentary rock, eastern Tennessee, USA. Geoderma, 2005, 126, 27-45.	5.1	34
32	Influence of Changing Hydrology on Pedogenic Calcite Precipitation in Vertisols, Dance Bayou, Brazoria County, Texas, U.S.A.: Implications for Estimating Paleoatmospheric PCO2. Journal of Sedimentary Research, 2011, 81, 394-400.	1.6	34
33	Incised-valley fills and other evidence of sea-level fluctuations affecting deposition of the Catskill Formation (Upper Devonian), Appalachian foreland basin, Pennsylvania. Journal of Sedimentary Research, 1998, 68, 347-361.	1.6	32
34	Analysis of Site Formation History and Potential Disturbance of Stratigraphic Context in Vertisols at the Debra L. Friedkin Archaeological Site in Central Texas, USA. Geoarchaeology - an International Journal, 2013, 28, 221-248.	1.5	31
35	Paleosol evidence for Quaternary uplift and for climate and ecosystem changes in the Cordillera de Talamanca, Costa Rica. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 248, 1-23.	2.3	30
36	Evidence for multiple, episodic, mid-Holocene Hypsithermal recorded in two soil profiles along an alluvial floodplain catena, southeastern Tennessee, USA. Quaternary Research, 2008, 69, 276-291.	1.7	28

#	Article	IF	CITATIONS
37	Reconstruction of a semi-arid late Pleistocene paleocatena from the Lake Victoria region, Kenya. Quaternary Research, 2015, 84, 368-381.	1.7	27
38	Late Pleistocene and Holocene climate and geomorphic histories as interpreted from a 23,000 14C yr B.P. paleosol and floodplain soils, southeastern West Virginia, USA. Quaternary Research, 2005, 63, 136-149.	1.7	26
39	Recurrent springâ€fed rivers in a Middle to Late Pleistocene semiâ€arid grassland: Implications for environments of early humans in the Lake Victoria Basin, Kenya. Sedimentology, 2015, 62, 1611-1635.	3.1	26
40	Evidence for Biological and Hydrological Controls on the Development of a Paleoproterozoic Paleoweathering Profile in the Baraboo Range, Wisconsin, U.S.A Journal of Sedimentary Research, 2008, 78, 443-457.	1.6	25
41	Micromorphology and Stable-Isotope Geochemistry of Historical Pedogenic Siderite Formed in PAH-Contaminated Alluvial Clay Soils, Tennessee, U.S.A Journal of Sedimentary Research, 2010, 80, 943-954.	1.6	25
42	Reconstructing pH of Paleosols Using Geochemical Proxies. Journal of Geology, 2018, 126, 427-449.	1.4	23
43	Distinguishing climate and time in the soil record: Mass-balance trends in Vertisols from the Texas coastal prairie. Geology, 2003, 31, 331.	4.4	22
44	Paleoenvironmental reconstruction of a paleosol catena, the Zinj archeological level, Olduvai Gorge, Tanzania. Quaternary Research, 2016, 85, 133-146.	1.7	22
45	Hydropedological model of vertisol formation along the Gulf Coast Prairie land resource area of Texas. Hydrology and Earth System Sciences, 2009, 13, 2039-2053.	4.9	22
46	Late Tertiary paleoclimatic interpretation from lacustrine rhythmites in the Gray Fossil Site, northeastern Tennessee, USA. Journal of Paleolimnology, 2009, 42, 11-24.	1.6	20
47	Biogeochemical characterization of a lithified paleosol: Implications for the interpretation of ancient Critical Zones. Geochimica Et Cosmochimica Acta, 2012, 87, 267-282.	3.9	20
48	Understanding barite and gypsum precipitation in upland acid-sulfate soils: An example from a Lufkin Series toposequence, south-central Texas, USA. Sedimentary Geology, 2014, 299, 106-118.	2.1	19
49	Evaluating the potential for tactical hunting in the Middle Stone Age: Insights from a bonebed of the extinct bovid, Rusingoryx atopocranion. Journal of Human Evolution, 2017, 108, 72-91.	2.6	19
50	Experimental calibration of clumped isotopes in siderite between 8.5 and 62â€ [−] °C and its application as paleo-thermometer in paleosols. Geochimica Et Cosmochimica Acta, 2019, 254, 1-20.	3.9	19
51	Late Quaternary alluvial history of the middle Owl Creek drainage basin in central Texas: A record of geomorphic response to environmental change. Quaternary International, 2013, 306, 24-41.	1.5	18
52	Terrestrial evidence for the Lilliput effect across the Cretaceous-Paleogene (K-Pg) boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 491, 161-169.	2.3	17
53	Recursive partitioning improves paleosol proxies for rainfall. Numerische Mathematik, 2019, 319, 819-845.	1.4	17
54	Assessing lithologic discontinuities and parent material uniformity within the Texas sandy mantle and implications for archaeological burial and preservation potential in upland settings. Quaternary Research, 2012, 78, 60-71.	1.7	16

#	Article	IF	CITATIONS
55	Interpretation of Late Quaternary climate and landscape variability based upon buried soil macro- and micromorphology, geochemistry, and stable isotopes of soil organic matter, Owl Creek, central Texas, USA. Catena, 2014, 114, 157-168.	5.0	16
56	The Paleoproterozoic Baraboo paleosol revisited: Quantifying mass fluxes of weathering and metasomatism, chemical climofunctions, and atmospheric p CO 2 in a chemically heterogeneous protolith. Precambrian Research, 2017, 301, 179-194.	2.7	16
57	Stable-Isotope Geochemistry of Vertisols Formed On Marine Limestone and Implications for Deep-Time Paleoenvironmental Reconstructions. Journal of Sedimentary Research, 2013, 83, 300-308.	1.6	15
58	Variations in late Quaternary wind intensity from grain-size partitioning of loess deposits in the Nenana River Valley, Alaska. Quaternary Research, 2017, 87, 258-274.	1.7	15
59	Late Neogene paleoclimate and paleoenvironment reconstructions from the Pipe Creek Sinkhole, Indiana, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274, 173-184.	2.3	14
60	Oxisolic processes and geochemical constraints on duration of weathering for Neoproterozoic Baltic paleosol. Precambrian Research, 2018, 310, 165-178.	2.7	14
61	Anatomy of a Sub-Cambrian Paleosol in Wisconsin: Mass Fluxes of Chemical Weathering and Climatic Conditions in North America during Formation of the Cambrian Great Unconformity. Journal of Geology, 2018, 126, 261-283.	1.4	14
62	Differentiating paleowetland subenvironments using a multi-disciplinary approach: An example from the Morrison formation, South Central Wyoming, USA. Sedimentary Geology, 2011, 238, 23-47.	2.1	13
63	THE WACO MAMMOTH NATIONAL MONUMENT MAY REPRESENT A DIMINISHED WATERING-HOLE SCENARIO BASED ON PRELIMINARY EVIDENCE OF POST-MORTEM SCAVENGING. Palaios, 2016, 31, 592-606.	1.3	13
64	Using event stratigraphy to map the Anthropocene – An example from the historic coal mining region in eastern Pennsylvania, USA. Anthropocene, 2013, 2, 42-50.	3.3	12
65	Climatic and human controls on Holocene floodplain vegetation changes in eastern Pennsylvania based on the isotopic composition of soil organic matter. Quaternary Research, 2013, 79, 377-390.	1.7	12
66	Sedimentology, stratigraphy, and paleoclimate at the late Miocene Coffee Ranch fossil site in the Texas Panhandle. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485, 361-376.	2.3	12
67	Epi-fluorescence micromorphology of saprolite reveals evidence for colloid retention in microscale pore systems. Geoderma, 2004, 121, 143-152.	5.1	11
68	Sedimentological and palaeoenvironmental study from Waregi Hill in the Hiwegi Formation (early) Tj ETQq0 0 0	rgBT/Ove 3.1	rlock 10 Tf 50
69	Groundwater-Fed Wetland Sediments and Paleosols: It's All About the Water Table. , 2013, , 47-61.		11
70	Comparison of modern and ancient bariteâ€bearing acidâ€sulphate soils using micromorphology, geochemistry and field relationships. Sedimentology, 2015, 62, 1078-1099.	3.1	10
71	Flood-induced transport of PAHs from streambed coal tar deposits. Science of the Total Environment, 2017, 575, 247-257.	8.0	9
72	Pure-Phase Transport and Dissolution of TCE in Sedimentary Rock Saprolite. Ground Water, 2006, 44, 406-414.	1.3	8

5

#	Article	IF	CITATIONS
73	A multiple cave deposit assessment of suitability of speleothem isotopes for reconstructing palaeoâ€vegetation and palaeoâ€temperature. Sedimentology, 2014, 61, 749-766.	3.1	8
74	Micromorphology of late Pleistocene and Holocene sediments and a new interpretation of the Holocene chronology at Anderson Pond, Tennessee, USA. Quaternary Research, 2017, 87, 82-95.	1.7	7
75	Reconstructing a high paleolatitude Mesozoic paleoenvironment from a truncated and deeply buried regolith, Norwegian North Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 528, 60-77.	2.3	7
76	High-CO2, acidic and oxygen-starved weathering at the Fennoscandian Shield at the Archean-Proterozoic transition. Precambrian Research, 2019, 327, 68-80.	2.7	7
77	Estimating fluxes in anthropogenic lead using alluvial soil mass-balance geochemistry, geochronology and archaeology in eastern USA. Anthropocene, 2014, 8, 25-38.	3.3	6
78	A high-resolution climate history of geochemical and biological proxies from a tropical freshwater wetland located in the Kenyan Rift Valley. Journal of African Earth Sciences, 2020, 162, 103703.	2.0	6
79	Multianalytical Pedosystem Approach to Characterizing and Interpreting the Fossil Record of Soils. , 2013, , 89-108.		6
80	Early Holocene soil cryoturbation in northeastern USA: Implications for archaeological site formation. Quaternary International, 2014, 342, 186-198.	1.5	5
81	Deposition and pedogenesis of periglacial sediments and buried soils at the Serpentine Hot Springs archaeological site, Seward Peninsula, AK. Catena, 2018, 170, 204-223.	5.0	5
82	CO2 drawdown and cooling at the onset of the Great Oxidation Event recorded in 2.45ÂGa paleoweathering crust. Chemical Geology, 2020, 548, 119678.	3.3	5
83	Echinoderm Stabilization Associated with a Paleokarst Surface at the Mississippian-Pennsylvanian Boundary in Tennessee, U.S.A Journal of Sedimentary Research, 2003, 73, 206-216.	1.6	2
84	REPLY: THE WACO MAMMOTH NATIONAL MONUMENT MAY REPRESENT A DIMINISHED WATERING-HOLE SCENARIO BASED ON PRELIMINARY EVIDENCE OF POST-MORTEM SCAVENGING. Palaios, 2017, 32, 558-558.	1.3	2
85	Landscape evolution across the Cretaceous/Paleogene boundary in southwestern North Dakota, U.S.A Cretaceous Research, 2020, 112, 104470.	1.4	1
86	CO2 Concentrations in Vertisols: Seasonal Variability and Shrink–Swell. , 2013, , 35-45.		0