Wenmei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8324723/publications.pdf

Version: 2024-02-01

1040056 940533 23 251 9 16 citations h-index g-index papers 23 23 23 176 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Dynamic Strain Model With Eddy Current Effects for Giant Magnetostrictive Transducer. IEEE Transactions on Magnetics, 2007, 43, 1381-1384.	2.1	40
2	Design and Output Characteristics of Magnetostrictive Tactile Sensor for Detecting Force and Stiffness of Manipulated Objects. IEEE Transactions on Industrial Informatics, 2019, 15, 1219-1225.	11.3	37
3	Optimization of Hysteresis Parameters for the Jiles-Atherton Model Using a Genetic Algorithm. IEEE Transactions on Applied Superconductivity, 2004, 14, 1157-1160.	1.7	33
4	Biomimetic Tactile Sensor Array Based on Magnetostrictive Materials. IEEE Sensors Journal, 2021, 21, 13116-13124.	4.7	22
5	Magnetostrictive tactile sensor array for force and stiffness detection. Journal of Magnetism and Magnetic Materials, 2020, 513, 167068.	2.3	17
6	Experimental and Calculating Analysis of High-Frequency Magnetic Energy Losses for Terfenol-D Magnetostrictive Material. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	14
7	Design and Characterization of High-Sensitivity Magnetostrictive Tactile Sensor Array. IEEE Sensors Journal, 2022, 22, 4004-4013.	4.7	11
8	Magnetostrictive Tactile Sensor Array for Object Recognition. IEEE Transactions on Magnetics, 2019, 55, 1-7.	2.1	10
9	Variable Coefficient Magnetic Energy Losses Calculation Model for Giant Magnetostrictive Materials. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	9
10	Variable coefficient magnetic energy loss calculating model for magnetostrictive materials considering compressive stress. AIP Advances, 2021, 11 , .	1.3	7
11	Analysis and experimental research on high frequency magnetic properties of different magnetostrictive materials under variable temperature conditions. AIP Advances, 2022, 12, 035231.	1.3	7
12	Electromagnetic-mechanical-thermal fully coupled model for Terfenol-D devices. Journal of Applied Physics, 2015, 117, 17A915.	2.5	6
13	High frequency characterization of Galfenol minor flux density loops. AIP Advances, 2017, 7, 056023.	1.3	6
14	The output voltage model and experiment of magnetostrictive displacement sensor based on Weidemann effect. AIP Advances, 2018, 8, .	1.3	6
15	Magnetostrictive Tactile Sensor Array Based on L-Shaped Galfenol Wire and Application for Tilt Detection. IEEE Sensors Journal, 2022, 22, 12645-12655.	4.7	6
16	Dynamic Experiments of Strain and Magnetic Field for Galfenol Rod and Its Modeling. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	5
17	High-Frequency Losses Calculating Model for Magnetostrictive Materials Considering Variable DC Bias. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	5
18	A Novel Three-Axial Force Tactile Sensor Based on the Fringing Effect of Electric Field. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	4

Wenmei

#	Article	IF	CITATION
19	High-Frequency Characteristic Test and Loss Calculation of TbDyFe Alloy Under Variable Temperature. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	3
20	Non-contact torque sensor based on magnetostrictive Fe ₃₀ Co ₇₀ alloy. AIP Advances, 2022, 12, 035112.	1.3	2
21	The structure, magnetostriction, and hysteresis of (Tb0.3Dy0.7Fe1.9)1â^'x(Tb0.15Ho0.85Fe1.9)x alloys. Journal of Applied Physics, 2015, 117, 17A912.	2.5	1
22	Bandgap and Vibration Reduction of Laminated Galfenol Phononic Crystal With Shunt Circuit. IEEE Transactions on Magnetics, 2021, 57, 1-6.	2.1	0
23	Design and Output Characteristics of Ultrasonic Transducer Based on Rare-Earth Giant Magnetostrictive Material. IEEE Transactions on Magnetics, 2022, 58, 1-6.	2.1	0