Heiko Lokstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/832396/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Light-Harvesting Complex II Adopts Different Quaternary Structures in Solution as Observed Using Small-Angle Scattering. Journal of Physical Chemistry Letters, 2022, 13, 1258-1265.	2.1	7
2	Spectral characterization of the main pigments in the plant photosynthetic apparatus by theory and experiment. Chemical Physics, 2022, 559, 111517.	0.9	9
3	Transient Absorption of Chlorophylls and Carotenoids after Two-Photon Excitation of LHCII. Journal of Physical Chemistry Letters, 2021, 12, 3176-3181.	2.1	10
4	Lack of Excitation Energy Transfer from the Bacteriochlorophyll Soret Band to Carotenoids in Photosynthetic Complexes of Purple Bacteria. Journal of Physical Chemistry B, 2021, 125, 3538-3545.	1.2	6
5	Photosynthetic Light-Harvesting (Antenna) Complexes—Structures and Functions. Molecules, 2021, 26, 3378.	1.7	43
6	Enhancement of the Photocurrent of a Single Photosystem I Complex by the Localized Plasmon of a Gold Nanorod. Journal of the American Chemical Society, 2021, 143, 13167-13174.	6.6	11
7	Two-photon absorption and excitation spectroscopy of carotenoids, chlorophylls and pigment–protein complexes. Physical Chemistry Chemical Physics, 2021, 23, 8731-8738.	1.3	12
8	Photoprotection of Photosynthetic Pigments in Plant One-Helix Protein 1/2 Heterodimers. Journal of Physical Chemistry Letters, 2020, 11, 9387-9392.	2.1	11
9	Silver Island Film for Enhancing Light Harvesting in Natural Photosynthetic Proteins. International Journal of Molecular Sciences, 2020, 21, 2451.	1.8	6
10	Photo-protection/photo-damage in natural systems: general discussion. Faraday Discussions, 2019, 216, 538-563.	1.6	4
11	Two-photon excitation spectroscopy of photosynthetic light-harvesting complexes and pigments. Faraday Discussions, 2019, 216, 494-506.	1.6	8
12	The origin of the "dark―absorption band near 675Ânm in the purple bacterial core light-harvesting complex LH1: two-photon measurements of LH1 and its subunit B820. Photosynthesis Research, 2019, 140, 207-213.	1.6	12
13	On the Electronic Structure of Cu Chlorophyllin and Its Breakdown Products: A Carbon K-Edge X-ray Absorption Spectroscopy Study. Journal of Physical Chemistry B, 2018, 122, 1846-1851.	1.2	7
14	Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum. Photosynthesis Research, 2018, 135, 45-54.	1.6	20
15	Spectrally selective fluorescence imaging of Chlorobaculum tepidum reaction centers conjugated to chelator-modified silver nanowires. Photosynthesis Research, 2018, 135, 329-336.	1.6	4
16	Identification of Short- and Long-Wavelength Emitting Chlorophylls in Cyanobacterial Photosystem I by Plasmon-Enhanced Single-Particle Spectroscopy at Room Temperature. Journal of Physical Chemistry Letters, 2018, 9, 6669-6675.	2.1	13
17	Temperature Dependence of Chlorophyll Triplet Quenching in Two Photosynthetic Light-Harvesting Complexes from Higher Plants and Dinoflagellates. Journal of Physical Chemistry B, 2018, 122, 8834-8845.	1.2	10
18	Insights into the binding behavior of native and non-native cytochromes to photosystem I from Thermosynechococcus elongatus. Journal of Biological Chemistry, 2018, 293, 9090-9100.	1.6	20

#	Article	IF	CITATIONS
19	Solution structure and excitation energy transfer in phycobiliproteins of Acaryochloris marina investigated by small angle scattering. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 318-324.	0.5	15
20	Temperature dependence of metal-enhanced fluorescence of photosystem I from Thermosynechococcus elongatus. Nanoscale, 2017, 9, 4196-4204.	2.8	15
21	Construction of photobiocathodes using multi-walled carbon nanotubes and photosystem I. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700017.	0.8	13
22	Solution structure of monomeric and trimeric photosystem I of Thermosynechococcus elongatus investigated by small-angle X-ray scattering. Photosynthesis Research, 2017, 133, 163-173.	1.6	18
23	Bioelectronic Circuit on a 3D Electrode Architecture: Enzymatic Catalysis Interconnected with Photosystem I. Journal of the American Chemical Society, 2017, 139, 16478-16481.	6.6	47
24	Engineering of supramolecular photoactive protein architectures: the defined co-assembly of photosystem I and cytochrome c using a nanoscaled DNA-matrix. Nanoscale, 2016, 8, 10695-10705.	2.8	55
25	Biohybrid architectures for efficient light-to-current conversion based on photosystem I within scalable 3D mesoporous electrodes. Journal of Materials Chemistry A, 2016, 4, 17009-17017.	5.2	71
26	Purple-bacterial photosynthetic reaction centers and quantumâ€dot hybridâ€assemblies in lecithin liposomes and thin films. Journal of Photochemistry and Photobiology B: Biology, 2016, 164, 73-82.	1.7	12
27	Origin of bimodal fluorescence enhancement factors of <i>Chlorobaculum tepidum</i> reaction centers on silver island films. FEBS Letters, 2016, 590, 2558-2565.	1.3	5
28	Magnesium K-Edge NEXAFS Spectroscopy of Chlorophyll <i>a</i> in Solution. Journal of Physical Chemistry B, 2016, 120, 11619-11627.	1.2	16
29	Silver island film substrates for ultrasensitive fluorescence detection of (bio)molecules. Photosynthesis Research, 2016, 127, 103-108.	1.6	14
30	High photocurrent generation by photosystem I on artificial interfaces composed of Ï€-system-modified graphene. Journal of Materials Chemistry A, 2015, 3, 12188-12196.	5.2	70
31	Unidirectional Photocurrent of Photosystem I on π-System-Modified Graphene Electrodes: Nanobionic Approaches for the Construction of Photobiohybrid Systems. Langmuir, 2015, 31, 10590-10598.	1.6	36
32	Organized Light Harvesting Photosystem I Layers on a Cytochrome C for the Construction of New Photobioelectrodes. ECS Meeting Abstracts, 2015, , .	0.0	0
33	Nanobionic Architectures of Photosystem I on À-System Modified Graphene Electrodes. ECS Meeting Abstracts, 2015, , .	0.0	0
34	Large plasmonic fluorescence enhancement of cyanobacterial photosystem I coupled to silver island films. Applied Physics Letters, 2014, 105, .	1.5	36
35	Properties of hybrid hybrid complexes composed of photosynthetic reaction centers from the purple bacterium Rhodobacter sphaeroides and quantum dots in lecithin liposomes. Biochemistry (Moscow), 2014, 79, 1183-1191.	0.7	5
36	Advanced unidirectional photocurrent generation via cytochrome c as reaction partner for directed assembly of photosystem I. Physical Chemistry Chemical Physics, 2014, 16, 15667-15674.	1.3	56

#	Article	IF	CITATIONS
37	2D Spectroscopy Study of Water-Soluble Chlorophyll-Binding Protein from <i>Lepidium virginicum</i> . Journal of Physical Chemistry B, 2014, 118, 3524-3531.	1.2	34
38	The Small Regulatory RNA SyR1/PsrR1 Controls Photosynthetic Functions in Cyanobacteria Â. Plant Cell, 2014, 26, 3661-3679.	3.1	113
39	Chlorophyll <i>a</i> phytylation is required for the stability of photosystems <scp>I</scp> and <scp>II</scp> in the cyanobacterium <i><scp>S</scp>ynechocystis</i> sp. <scp>PCC</scp> 6803. Plant Journal, 2013, 73, 336-346.	2.8	12
40	Non-Linear Spectroscopy of Carotenoid-Chlorophyll Interactions in Photosynthetic Light-Harvesting Complexes. Advanced Topics in Science and Technology in China, 2013, , 152-155.	0.0	1
41	Evidence for a Role of VIPP1 in the Structural Organization of the Photosynthetic Apparatus in <i>Chlamydomonas</i> . Plant Cell, 2012, 24, 637-659.	3.1	104
42	Elena Yaronskaya (10.05.1955–24.09.2011). Photosynthesis Research, 2012, 111, 259-260.	1.6	0
43	Elucidation of structure–function relationships in plant major light-harvesting complex (LHC II) by nonlinear spectroscopy. Photosynthesis Research, 2012, 111, 227-235.	1.6	3
44	Elucidation of structure–function relationships in photosynthetic light-harvesting antenna complexes by non-linear polarization spectroscopy in the frequency domain (NLPF). Journal of Plant Physiology, 2011, 168, 1488-1496.	1.6	4
45	Functions of the water soluble chlorophyll-binding protein in plants. Journal of Plant Physiology, 2011, 168, 1444-1451.	1.6	26
46	A minimal mathematical model of nonphotochemical quenching of chlorophyll fluorescence. BioSystems, 2011, 103, 196-204.	0.9	45
47	Two-photon fluorescence excitation spectroscopy of photosynthetic pigments and pigment-protein complexes. , 2011, , .		0
48	A Cytoplasmically Inherited Barley Mutant Is Defective in Photosystem I Assembly Due to a Temperature-Sensitive Defect in <i>ycf3</i> Splicing Â. Plant Physiology, 2009, 151, 1802-1811.	2.3	32
49	A tribute: Professor Dr. Paul Hoffmann (March 28, 1931–July 10, 2008), a scientist with a great collaborative spirit. Photosynthesis Research, 2009, 100, 1-5.	1.6	0
50	Influence of detergent concentration on aggregation and spectroscopic properties of light-harvesting complex II. Photosynthesis Research, 2008, 95, 317-325.	1.6	21
51	Femtosecond Spectroscopy of Native and Carotenoidless Purple-Bacterial LH2 Clarifies Functions of Carotenoids. Biophysical Journal, 2008, 94, 4808-4811.	0.2	24
52	Low lying carotenoid "dark" singlet states in light-harvesting complexes revealed by multi-photon fluorescence excitation spectroscopy. , 2007, , .		0
53	Channeling of Eukaryotic Diacylglycerol into the Biosynthesis of Plastidial Phosphatidylglycerol. Journal of Biological Chemistry, 2007, 282, 4613-4625.	1.6	33
54	Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphurariaâ€. Plant Journal, 2007, 51, 500-511.	2.8	87

#	Article	IF	CITATIONS
55	Near edge X-ray absorption fine structure spectroscopy (NEXAFS) of pigment–protein complexes: Peridinin–chlorophyll a protein (PCP) of Amphidinium carterae. Journal of Proteomics, 2007, 70, 369-376.	2.4	6
56	Pigment-Pigment Interactions in PCP of Amphidinium carterae Investigated by Nonlinear Polarization Spectroscopy in the Frequency Domain. Biophysical Journal, 2006, 90, 261-271.	0.2	29
57	Analysis of absorption spectra of purple bacterial reaction centers in the near infrared region by higher order derivative spectroscopy. Biophysical Chemistry, 2006, 122, 16-26.	1.5	13
58	Stepwise Two-photon Excited Fluorescence from Higher Excited States of Chlorophylls in Photosynthetic Antenna Complexes. Journal of Biological Chemistry, 2006, 281, 25381-25387.	1.6	11
59	Excitation Energy Transfer Between (Bacterio)Chlorophylls—the Role of Excitonic Coupling. , 2006, , 413-430.		5
60	A method of spectral subband decomposition by simultaneous fitting the initial spectrum and a set of its derivatives. Journal of Proteomics, 2005, 63, 10-23.	2.4	6
61	Inactivation of the geranylgeranyl reductase (ChIP) gene in the cyanobacterium Synechocystis sp. PCC 6803. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1706, 195-203.	0.5	76
62	Towards elucidating the energy of the first excited singlet state of xanthophyll cycle pigments by X-ray absorption spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 102-107.	0.5	7
63	Thegun4gene is essential for cyanobacterial porphyrin metabolism. FEBS Letters, 2004, 571, 119-123.	1.3	55
64	Photophysical properties ofProchlorococcus marinusSS120 divinyl chlorophylls and phycoerythrin in vitro and in vivo. FEBS Letters, 2003, 553, 79-84.	1.3	41
65	Assignment of Spectral Substructures to Pigment-Binding Sites in Higher Plant Light-Harvesting Complex LHC-Ilâ€. Biochemistry, 2002, 41, 2281-2287.	1.2	89
66	Spectral Substructure and Excitonic Interactions in the Minor Photosystem II Antenna Complex CP29 As Revealed by Nonlinear Polarization Spectroscopy in the Frequency Domain. Biochemistry, 2002, 41, 3049-3056.	1.2	17
67	Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1553, 309-319.	0.5	150
68	Fluorescence of native and carotenoid-depleted LH2 from Chromatium minutissimum , originating from simultaneous two-photon absorption in the spectral range of the presumed (optically â€~dark') S1 state of carotenoids. FEBS Letters, 2002, 528, 227-229.	1.3	29
69	Corrigendum to: Fluorescence of native and carotenoid-depleted LH2 fromChromatium minutissimum, originating from simultaneous two-photon absorption in the spectral range of the presumed (optically â€~dark') S1state of carotenoids (FEBS 26524). FEBS Letters, 2002, 530, 257-257.	1.3	0
70	Excitonic Coupling of Chlorophylls in the Plant Light-Harvesting Complex LHC-II. Biophysical Journal, 2002, 82, 1030-1039.	0.2	24
71	Two-Photon Excited Fluorescence from Higher Electronic States of Chlorophylls in Photosynthetic Antenna Complexes: A New Approach to Detect Strong Excitonic Chlorophyll a/b Coupling. Biophysical Journal, 2002, 82, 1580-1585.	0.2	30
72	Direct evidence for excitonically coupled chlorophylls a and b in LHC II of higher plants by nonlinear polarization spectroscopy in the frequency domain. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1556, 1-5.	0.5	15

#	Article	IF	CITATIONS
73	Towards time-resolved, coupled structure–function information on carotenoid excited state processes: X-ray and optical short-pulse double resonance spectroscopy. Journal of Proteomics, 2001, 48, 239-246.	2.4	12
74	Light-harvesting antenna function of phycoerythrin in Prochlorococcus marinus. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1410, 97-98.	0.5	36
75	Photosynthetic light utilization and xanthophyll cycle activity in the galactolipid deficient dgd1 mutant of Arabidopsis thaliana. Plant Physiology and Biochemistry, 1998, 36, 407-417.	2.8	26
76	The phospholipid-deficient pho1 mutant of Arabidopsis thaliana is affected in the organization, but not in the light acclimation, of the thylakoid membrane. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1415, 205-218.	1.4	54
77	Determination of the Aggregate Size in Chlorophyll a Oligomers by Non-Linear Absorption Spectroscopy on the ps and fs Timescale. , 1998, , 469-472.		1
78	Direct Resolution of Spectral Fine-Structure and Ultrafast Exciton Dynamics in Light Harvesting Complex II by Nonlinear Polarization Spectroscopy in the Frequency Domain. , 1998, , 293-296.		1
79	The Use of Lipid Headgroup Mutants to Explore the Function of Thylakoid Lipids in Photosynthesis. , 1998, , 1787-1792.		1
80	Changes in the Composition of the Photosynthetic Apparatus in the Galactolipid-Deficient dgd1 Mutant of Arabidopsis thaliana. Plant Physiology, 1997, 115, 1175-1184.	2.3	94
81	Direct observation of spectral substructure in the Qy-absorption band of light harvesting complex II by nonlinear polarisation spectroscopy in the frequency domain at low temperature. Biochimica Et Biophysica Acta - Bioenergetics, 1997, 1321, 195-199.	0.5	19
82	Kinetic Studies on the Xanthophyll Cycle in Barley Leaves (Influence of Antenna Size and Relations to) Tj ETQq0 0	0 rgBT /0 2.3	verlock 10 T 124
83	Relationship between quenching of maximum and dark-level chlorophyll fluorescence in vivo: dependence on Photosystem II antenna size. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1228, 91-94.	0.5	36
84	Nonlinear polarization spectroscopy in the frequency domain of light-harvesting complex II: absorption band substructure and exciton dynamics. Biophysical Journal, 1995, 69, 1536-1543.	0.2	18

85	Nonlinear Polarization Spectroscopy in the Frequency Domain: Spectral Substructure and Ultrafast Exciton Dynamics in Higher Plant Light-Harvesting Complex II. , 1995, , 287-290.		2
86	The role of light-harvesting complex II in excess excitation energy dissipation: An in-vivo fluorescence study on the origin of high-energy quenching. Journal of Photochemistry and Photobiology B: Biology, 1994, 26, 175-184.	1.7	44
87	Comparison of chlorophyll fluorescence quenching in leaves of wild-type with a chlorophyll-b-less mutant of barley (Hordeum vulgare L.). Journal of Photochemistry and Photobiology B: Biology, 1993, 19, 217-225.	1.7	46