
Timm C Harder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8323933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of genomic and antigenic properties of Newcastle Disease virus genotypes II, XXI and VII from Egypt do not point to antigenic drift as selection marker. Transboundary and Emerging Diseases, 2022, 69, 849-863.	1.3	11
2	Improved Subtyping of Avian Influenza Viruses Using an RT-qPCR-Based Low Density Array: â€~Riems Influenza a Typing Array', Version 2 (RITA-2). Viruses, 2022, 14, 415.	1.5	15
3	Infections with highly pathogenic avian influenza A virus (HPAIV) H5N8 in harbor seals at the German North Sea coast, 2021. Emerging Microbes and Infections, 2022, 11, 725-729.	3.0	34
4	Highly pathogenic avian influenza virus incursions of subtype H5N8, H5N5, H5N1, H5N4, and H5N3 in Germany during 2020-21. Virus Evolution, 2022, 8, veac035.	2.2	19
5	Genuine lethal infection of a wood pigeon (Columba palumbus) with high pathogenicity avian influenza H5N1, clade 2.3.4.4b, in Germany, 2022. Veterinary Microbiology, 2022, 270, 109461.	0.8	2
6	Exploring surface water as a transmission medium of avian influenza viruses – systematic infection studies in mallards. Emerging Microbes and Infections, 2022, 11, 1250-1261.	3.0	17
7	Has Epizootic Become Enzootic? Evidence for a Fundamental Change in the Infection Dynamics of Highly Pathogenic Avian Influenza in Europe, 2021. MBio, 2022, 13, .	1.8	64
8	Are pigs overestimated as a source of zoonotic influenza viruses?. Porcine Health Management, 2022, 8, .	0.9	13
9	The genetics of highly pathogenic avian influenza viruses of subtype H5 in Germany, 2006–2020. Transboundary and Emerging Diseases, 2021, 68, 1136-1150.	1.3	19
10	Respiratory disease due to mixed viral infections in poultry flocks in Egypt between 2017 and 2018: Upsurge of highly pathogenic avian influenza virus subtype H5N8 since 2018. Transboundary and Emerging Diseases, 2021, 68, 21-36.	1.3	31
11	Avian influenza infections in poultry farms in Egypt, a continuous challenge: Current problems related to pathogenesis, epidemiology, and diagnosis. GMPC Thesis & Opinions Platform, 2021, 1, 12-16.	0.1	1
12	Human Infection with Eurasian Avian-Like Swine Influenza A(H1N1) Virus, the Netherlands, September 2019. Emerging Infectious Diseases, 2021, 27, 939-943.	2.0	20
13	Neuraminidase-associated plasminogen recruitment enables systemic spread of natural avian Influenza viruses H3N1. PLoS Pathogens, 2021, 17, e1009490.	2.1	4
14	Monoclonal antibodies specific for the hemagglutinin-neuraminidase protein define neutralizing epitopes specific for Newcastle disease virus genotype 2.VII from Egypt. Virology Journal, 2021, 18, 86.	1.4	0
15	A Semiquantitative Scoring System for Histopathological and Immunohistochemical Assessment of Lesions and Tissue Tropism in Avian Influenza. Viruses, 2021, 13, 868.	1.5	19
16	Genetic and antigenic evolution of H1 swine influenza A viruses isolated in Belgium and the Netherlands from 2014 through 2019. Scientific Reports, 2021, 11, 11276.	1.6	11
17	Antigenic and Molecular Characterization of Virulent Newcastle Disease Viruses Circulating in Ethiopia Between 1976 and 2008. Veterinary Medicine: Research and Reports, 2021, Volume 12, 129-140.	0.4	3
18	Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerging Microbes and Infections, 2021, 10, 148-151.	3.0	125

#	Article	IF	CITATIONS
19	Wild bird trade at live poultry markets potentiates risks of avian influenza virus introduction in Iran. Infection Ecology and Epidemiology, 2021, 11, 1992083.	0.5	0
20	Optimizing Release of Nucleic Acids of African Swine Fever Virus and Influenza A Virus from FTA Cards. International Journal of Molecular Sciences, 2021, 22, 12915.	1.8	7
21	Influenza A Viruses and Zoonotic Events—Are We Creating Our Own Reservoirs?. Viruses, 2021, 13, 2250.	1.5	26
22	Novel Reassortant Highly Pathogenic Avian Influenza A(H5N2) Virus in Broiler Chickens, Egypt. Emerging Infectious Diseases, 2020, 26, 129-133.	2.0	17
23	Controlling Avian Influenza Virus in Bangladesh: Challenges and Recommendations. Viruses, 2020, 12, 751.	1.5	19
24	SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe, The, 2020, 1, e218-e225.	3.4	434
25	Exposure of domestic swine to influenza A viruses in Ghana suggests unidirectional, reverse zoonotic transmission at the human–animal interface. Zoonoses and Public Health, 2020, 67, 697-707.	0.9	8
26	Rapid multiplex MinION nanopore sequencing workflow for Influenza A viruses. BMC Infectious Diseases, 2020, 20, 648.	1.3	35
27	Novel HPAIV H5N8 Reassortant (Clade 2.3.4.4b) Detected in Germany. Viruses, 2020, 12, 281.	1.5	41
28	Emerging infectious bronchitis virus (IBV) in Egypt: Evidence for an evolutionary advantage of a new S1 variant with a unique gene 3ab constellation. Infection, Genetics and Evolution, 2020, 85, 104433.	1.0	13
29	Modulation of lethal HPAIV H5N8 clade 2.3.4.4B infection in AIV pre-exposed mallards. Emerging Microbes and Infections, 2020, 9, 180-193.	3.0	20
30	Active virological surveillance in backyard ducks in Bangladesh: detection of avian influenza and gammacoronaviruses. Avian Pathology, 2020, 49, 361-368.	0.8	10
31	Comparison of pathogenicity of subtype H9 avian influenza wild-type viruses from a wide geographic origin expressing mono-, di-, or tri-basic hemagglutinin cleavage sites. Veterinary Research, 2020, 51, 48.	1.1	17
32	Genotyping and reassortment analysis of highly pathogenic avian influenza viruses H5N8 and H5N2 from Egypt reveals successive annual replacement of genotypes. Infection, Genetics and Evolution, 2020, 84, 104375.	1.0	17
33	In vitro reassortment and adaptation of influenza A viruses circulating in swine. Access Microbiology, 2020, 2, .	0.2	0
34	Variable impact of the hemagglutinin polybasic cleavage site on virulence and pathogenesis of avian influenza H7N7 virus in chickens, turkeys and ducks. Scientific Reports, 2019, 9, 11556.	1.6	23
35	Genetic Characterization and Zoonotic Potential of Highly Pathogenic Avian Influenza Virus A(H5N6/H5N5), Germany, 2017–2018. Emerging Infectious Diseases, 2019, 25, 1973-1976.	2.0	19
36	Co-subsistence of avian influenza virus subtypes of low and high pathogenicity in Bangladesh: Challenges for diagnosis, risk assessment and control. Scientific Reports, 2019, 9, 8306.	1.6	16

#	Article	IF	CITATIONS
37	Investigation of suspected Newcastle disease (ND) outbreaks in Egypt uncovers a high virus velogenic ND virus burden in small-scale holdings and the presence of multiple pathogens. Avian Pathology, 2019, 48, 406-415.	0.8	20
38	A newly developed tetraplex realâ€ŧime RTâ€₽CR for simultaneous screening of influenza virus types A, B, C and D. Influenza and Other Respiratory Viruses, 2019, 13, 71-82.	1.5	22
39	Evidence of exposure of domestic pigs to Highly Pathogenic Avian Influenza H5N1 in Nigeria. Scientific Reports, 2018, 8, 5900.	1.6	27
40	Swarm incursions of reassortants of highly pathogenic avian influenza virus strains H5N8 and H5N5, clade 2.3.4.4b, Germany, winter 2016/17. Scientific Reports, 2018, 8, 15.	1.6	57
41	Multiple introductions of reassorted highly pathogenic avian influenza viruses (H5N8) clade 2.3.4.4b causing outbreaks in wild birds and poultry in Egypt. Infection, Genetics and Evolution, 2018, 58, 56-65.	1.0	64
42	Endemic situation of multiple avian influenza strains in poultry in Egypt: A continuing nightmare. Zoonoses and Public Health, 2018, 65, 908-910.	0.9	6
43	Sane and sound: a serologic and molecular survey for selected infectious agents in neozootic Egyptian geese (Alopochen aegyptiacus) in Germany. European Journal of Wildlife Research, 2018, 64, 1.	0.7	4
44	A viral race for primacy: co-infection of a natural pair of low and highly pathogenic H7N7 avian influenza viruses in chickens and embryonated chicken eggs. Emerging Microbes and Infections, 2018, 7, 1-12.	3.0	22
45	White-Tailed Sea Eagle (Haliaeetus albicilla) Die-Off Due to Infection with Highly Pathogenic Avian Influenza Virus, Subtype H5N8, in Germany. Viruses, 2018, 10, 478.	1.5	28
46	From low to high pathogenicity-Characterization of H7N7 avian influenza viruses in two epidemiologically linked outbreaks. Transboundary and Emerging Diseases, 2018, 65, 1576-1587.	1.3	36
47	Subtyping of Swine Influenza Viruses Using a High-Throughput Real-Time PCR Platform. Frontiers in Cellular and Infection Microbiology, 2018, 8, 165.	1.8	15
48	A novel European H5N8 influenza A virus has increased virulence in ducks but low zoonotic potential. Emerging Microbes and Infections, 2018, 7, 1-14.	3.0	62
49	Molecular subtyping of European swine influenza viruses and scaling to high-throughput analysis. Virology Journal, 2018, 15, 7.	1.4	15
50	Engineered recombinant protein products of the avian paramyxovirus type-1 nucleocapsid and phosphoprotein genes for serological diagnosis. Virology Journal, 2018, 15, 8.	1.4	7
51	Isolation and genetic characterization of a novel 2.2.1.2a H5N1 virus from a vaccinated meat-turkeys flock in Egypt. Virology Journal, 2017, 14, 48.	1.4	22
52	Urgent request on avian influenza. EFSA Journal, 2017, 15, e04687.	0.9	9
53	New real time and conventional RT-PCRs for updated molecular diagnosis of infectious bronchitis virus infection (IBV) in chickens in Egypt associated with frequent co-infections with avian influenza and Newcastle Disease viruses. Journal of Virological Methods, 2017, 245, 19-27.	1.0	27
54	Avian influenza. EFSA Journal, 2017, 15, e04991.	0.9	38

#	Article	IF	CITATIONS
55	Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets. Journal of Virology, 2017, 91, .	1.5	22
56	Insights into genetic diversity and biological propensities of potentially zoonotic avian influenza H9N2 viruses circulating in Egypt. Virology, 2017, 511, 165-174.	1.1	19
57	A genetically engineered H5 protein expressed in insect cells confers protection against different clades of H5N1 highly pathogenic avian influenza viruses in chickens. Avian Pathology, 2017, 46, 224-233.	0.8	18
58	Outbreaks among Wild Birds and Domestic Poultry Caused by Reassorted Influenza A(H5N8) Clade 2.3.4.4 Viruses, Germany, 2016. Emerging Infectious Diseases, 2017, 23, 633-636.	2.0	89
59	Real-time reverse transcription PCR-based sequencing-independent pathotyping of Eurasian avian influenza A viruses of subtype H7. Virology Journal, 2017, 14, 137.	1.4	8
60	Novel real-time PCR-based patho- and phylotyping of potentially zoonotic avian influenza A subtype H5 viruses at risk of incursion into Europe in 2017. Eurosurveillance, 2017, 22, .	3.9	22
61	Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4b in Germany in 2016/2017. Frontiers in Veterinary Science, 2017, 4, 240.	0.9	45
62	Heterologous post-infection immunity against Egyptian avian influenza virus (AIV) H9N2 modulates the course of subsequent infection by highly pathogenic AIV H5N1, but vaccination immunity does not. Journal of General Virology, 2017, 98, 1169-1173.	1.3	16
63	Riems influenza a typing array (RITA): An RT-qPCR-based low density array for subtyping avian and mammalian influenza a viruses. Scientific Reports, 2016, 6, 27211.	1.6	110
64	Evolutionary features of influenza A/H5N1 virus populations in Egypt: poultry and human health implications. Archives of Virology, 2016, 161, 1963-1967.	0.9	20
65	Influenza A Virus Infection in Pigs Attracts Multifunctional and Cross-Reactive T Cells to the Lung. Journal of Virology, 2016, 90, 9364-9382.	1.5	53
66	Rapid detection and subtyping of European swine influenza viruses in porcine clinical samples by haemagglutinin―and neuraminidaseâ€specific tetra―and triplex realâ€time <scp>RT</scp> â€ <scp>PCR</scp> Influenza and Other Respiratory Viruses, 2016, 10, 504-517.	• S.1.5	37
67	Full genome sequence analysis of a newly emerged QX-like infectious bronchitis virus from Sudan reveals distinct spots of recombination. Infection, Genetics and Evolution, 2016, 46, 42-49.	1.0	21
68	Benefits and Limits of Egg Yolkvs. Serum Samples for Avian Influenza Virus Serosurveillance. Avian Diseases, 2016, 60, 496-499.	0.4	4
69	A pallid rainbow: toward improved understanding of avian influenza biology. Future Virology, 2016, 11, 429-437.	0.9	0
70	Poultry food products—a source of avian influenza virus transmission to humans?. Clinical Microbiology and Infection, 2016, 22, 141-146.	2.8	27
71	Spatiotemporal Analysis of the Genetic Diversity of Seal Influenza A(H10N7) Virus, Northwestern Europe. Journal of Virology, 2016, 90, 4269-4277.	1.5	28
72	Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on. Infection, Genetics and Evolution, 2016, 40, 80-90.	1.0	58

#	Article	IF	CITATIONS
73	Continuous cell lines from the Muscovy duck as potential replacement for primary cells in the production of avian vaccines. Avian Pathology, 2016, 45, 137-155.	0.8	11
74	Phocine distemper virus (PDV) seroprevalence as predictor for future outbreaks in harbour seals. Veterinary Microbiology, 2016, 183, 43-49.	0.8	7
75	Progressive glycosylation of the haemagglutinin of avian influenza H5N1 modulates virus replication, virulence and chicken-to-chicken transmission without significant impact on antigenic drift. Journal of General Virology, 2016, 97, 3193-3204.	1.3	11
76	Highly pathogenic avian influenza A(H5N8) outbreaks: protection and management of exposed people in Europe, 2014/15 and 2016. Eurosurveillance, 2016, 21, .	3.9	30
77	Evolutionary trajectories and diagnostic challenges of potentially zoonotic avian influenza viruses H5N1 and H9N2 co-circulating in Egypt. Infection, Genetics and Evolution, 2015, 34, 278-291.	1.0	46
78	Sample preparation for avian and porcine influenza virus cDNA amplification simplified: Boiling vs. conventional RNA extraction. Journal of Virological Methods, 2015, 221, 62-67.	1.0	8
79	Alterations in Hemagglutinin Receptor-Binding Specificity Accompany the Emergence of Highly Pathogenic Avian Influenza Viruses. Journal of Virology, 2015, 89, 5395-5405.	1.5	16
80	Influenza A(H5N8) Virus Similar to Strain in Korea Causing Highly Pathogenic Avian Influenza in Germany. Emerging Infectious Diseases, 2015, 21, 860-863.	2.0	73
81	Outbreaks of highly pathogenic avian influenza H5N1 clade 2.3.2.1c in hunting falcons and kept wild birds in Dubai implicate intercontinental virus spread. Journal of General Virology, 2015, 96, 3212-3222.	1.3	31
82	ClassyFlu: Classification of Influenza A Viruses with Discriminatively Trained Profile-HMMs. PLoS ONE, 2014, 9, e84558.	1.1	13
83	European Surveillance Network for Influenza in Pigs: Surveillance Programs, Diagnostic Tools and Swine Influenza Virus Subtypes Identified in 14 European Countries from 2010 to 2013. PLoS ONE, 2014, 9, e115815.	1.1	107
84	Failure of productive infection of Mallards (<i>Anas platyrhynchos</i>) with H16 subtype of avian influenza viruses. Influenza and Other Respiratory Viruses, 2014, 8, 613-616.	1.5	7
85	Avian Influenza H7N9/13 and H7N7/13: a Comparative Virulence Study in Chickens, Pigeons, and Ferrets. Journal of Virology, 2014, 88, 9153-9165.	1.5	39
86	Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005. Eurosurveillance, 2014, 19, 20996.	3.9	58
87	Distinction of subtype-specific antibodies against European porcine influenza viruses by indirect ELISA based on recombinant hemagglutinin protein fragment-1. Virology Journal, 2013, 10, 246.	1.4	8
88	Expanded Cocirculation of Stable Subtypes, Emerging Lineages, and New Sporadic Reassortants of Porcine Influenza Viruses in Swine Populations in Northwest Germany. Journal of Virology, 2013, 87, 10460-10476.	1.5	38
89	Towards a new, ecologically targeted approach to monitoring wild bird populations for avian influenza viruses. Epidemiology and Infection, 2013, 141, 1050-1060.	1.0	5
90	Influenza A virus infections in marine mammals and terrestrial carnivores. Berliner Und Munchener Tierarztliche Wochenschrift, 2013, 126, 500-8.	0.7	5

#	Article	IF	CITATIONS
91	Reassortants of pandemic influenza A virus H1N1/2009 and endemic porcine HxN2 viruses emerge in swine populations in Germany. Journal of General Virology, 2012, 93, 1658-1663.	1.3	34
92	Saving resources: Avian influenza surveillance using pooled swab samples and reduced reaction volumes in real-time RT-PCR. Journal of Virological Methods, 2012, 186, 119-125.	1.0	46
93	Effect of Swab Matrix, Storage Time, and Temperature on Detection of Avian Influenza Virus RNA in Swab Samples. Avian Diseases, 2012, 56, 955-958.	0.4	17
94	Health status of seabirds and coastal birds found at the German North Sea coast. Acta Veterinaria Scandinavica, 2012, 54, 43.	0.5	7
95	Diversifying evolution of highly pathogenic H5N1 avian influenza virus in Egypt from 2006 to 2011. Virus Genes, 2012, 45, 14-23.	0.7	35
96	Influence of maternal immunity on vaccine efficacy and susceptibility of one day old chicks against Egyptian highly pathogenic avian influenza H5N1. Veterinary Microbiology, 2012, 155, 13-20.	0.8	50
97	Highly pathogenic avian influenza virus H5N1 from Egypt escapes vaccine-induced immunity but confers clinical protection against a heterologous clade 2.2.1 Egyptian isolate. Vaccine, 2011, 29, 5567-5573.	1.7	92
98	Multiple dose vaccination with heterologous H5N2 vaccine: Immune response and protection against variant clade 2.2.1 highly pathogenic avian influenza H5N1 in broiler breeder chickens. Vaccine, 2011, 29, 6219-6225.	1.7	50
99	Analysis of influenza A viruses of subtype H1 from wild birds, turkeys and pigs in Germany reveals interspecies transmission events. Influenza and Other Respiratory Viruses, 2011, 5, 276-284.	1.5	15
100	Broad spectrum reactivity versus subtype specificity—Trade-offs in serodiagnosis of influenza A virus infections by competitive ELISA. Journal of Virological Methods, 2011, 173, 49-59.	1.0	8
101	The use of FTA® filter papers for diagnosis of avian influenza virus. Journal of Virological Methods, 2011, 174, 120-122.	1.0	64
102	Avian influenza virus risk assessment in falconry. Virology Journal, 2011, 8, 187.	1.4	10
103	Serological and virological survey and resighting of marked wild geese in Germany. European Journal of Wildlife Research, 2011, 57, 1025-1032.	0.7	2
104	In vivo biotinylated recombinant influenza A virus hemagglutinin for use in subtype-specific serodiagnostic assays. Analytical Biochemistry, 2011, 411, 22-31.	1.1	13
105	Reassorted pandemic (H1N1) 2009 influenza A virus discovered from pigs in Germany. Journal of General Virology, 2011, 92, 1184-1188.	1.3	89
106	Possible sources and spreading routes of highly pathogenic avian influenza virus subtype H5N1 infections in poultry and wild birds in Central Europe in 2007 inferred through likelihood analyses. Infection, Genetics and Evolution, 2010, 10, 1075-1084.	1.0	17
107	Systemic influenza virus H5N1 infection in cats after gastrointestinal exposure. Influenza and Other Respiratory Viruses, 2010, 4, 379-386.	1.5	17
108	Increasing Prevalence of Unique Mutation Patterns in H5N1 Avian Influenza Virus HA and NA Glycoproteins from Human Infections in Egypt. Sequencing, 2010, 2010, 1-3.	0.5	8

#	Article	IF	CITATIONS
109	Limited Susceptibility of Chickens, Turkeys, and Mice to Pandemic (H1N1) 2009 Virus. Emerging Infectious Diseases, 2010, 16, 703-705.	2.0	18
110	Evaluation of Two Commercial Loop-Mediated Isothermal Amplification Assays for Detection of Avian Influenza H5 and H7 Hemagglutinin Genes. Journal of Veterinary Diagnostic Investigation, 2010, 22, 61-66.	0.5	25
111	Simultaneous detection and differentiation by multiplex real time RT-PCR of highly pathogenic avian influenza subtype H5N1 classic (clade 2.2.1 proper) and escape mutant (clade 2.2.1 variant) lineages in Egypt. Virology Journal, 2010, 7, 260.	1.4	18
112	Avian influenza virus monitoring in wintering waterbirds in Iran, 2003-2007. Virology Journal, 2010, 7, 43.	1.4	54
113	Longitudinal 2 years field study of conventional vaccination against highly pathogenic avian influenza H5N1 in layer hens. Vaccine, 2010, 28, 6832-6840.	1.7	15
114	Influenza virus infections in dogs and cats. Veterinary Immunology and Immunopathology, 2010, 134, 54-60.	0.5	86
115	Highly Pathogenic Avian Influenza Virus Subtype H5N1 in Mute Swans (Cygnus olor) in Central Bosnia. Avian Diseases, 2010, 54, 496-501.	0.4	6
116	Dynamics of Specific Antibody Responses Induced in Mallards After Infection by or Immunization with Low Pathogenicity Avian Influenza Viruses. Avian Diseases, 2010, 54, 79-85.	0.4	56
117	New real-time reverse transcriptase polymerase chain reactions facilitate detection and differentiation of novel A/H1N1 influenza virus in porcine and human samples. Berliner Und Munchener Tierarztliche Wochenschrift, 2010, 123, 286-92.	0.7	43
118	Chances and Limitations of Wild Bird Monitoring for the Avian Influenza Virus H5N1 — Detection of Pathogens Highly Mobile in Time and Space. PLoS ONE, 2009, 4, e6639.	1.1	16
119	Virological Monitoring of White Storks (Ciconia ciconia) for Avian Influenza. Avian Diseases, 2009, 53, 578-584.	0.4	7
120	Active Surveillance for Avian Influenza Virus Infection in Wild Birds by Analysis of Avian Fecal Samples from the Environment. Journal of Wildlife Diseases, 2009, 45, 512-518.	0.3	33
121	Highly Pathogenic Avian Influenza Virus (H5N1) in Frozen Duck Carcasses, Germany, 2007. Emerging Infectious Diseases, 2009, 15, 272-279.	2.0	46
122	Ducks as Sentinels for Avian Influenza in Wild Birds. Emerging Infectious Diseases, 2009, 15, 1633-1636.	2.0	41
123	Design and Validation of a Microarray for Detection, Hemagglutinin Subtyping, and Pathotyping of Avian Influenza Viruses. Journal of Clinical Microbiology, 2009, 47, 327-334.	1.8	52
124	Rapid and Highly Sensitive Neuraminidase Subtyping of Avian Influenza Viruses by Use of a Diagnostic DNA Microarray. Journal of Clinical Microbiology, 2009, 47, 2985-2988.	1.8	29
125	Frequency of PRRS live vaccine virus (European and North American genotype) in vaccinated and non-vaccinated pigs submitted for respiratory tract diagnostics in North-Western Germany. Preventive Veterinary Medicine, 2009, 92, 31-37.	0.7	19
126	Diagnosis and strain differentiation of avian influenza viruses by restriction fragment mass analysis. Journal of Virological Methods, 2009, 158, 63-69.	1.0	12

#	Article	IF	CITATIONS
127	Rapid haemagglutinin subtyping and pathotyping of avian influenza viruses by a DNA microarray. Journal of Virological Methods, 2009, 160, 200-205.	1.0	28
128	Rapid molecular subtyping by reverse transcription polymerase chain reaction of the neuraminidase gene of avian influenza A viruses. Veterinary Microbiology, 2009, 135, 253-260.	0.8	78
129	Sequence diversity of the haemagglutinin open reading frame of recent highly pathogenic avian influenza H5N1 isolates from Egypt. Archives of Virology, 2009, 154, 1559-1562.	0.9	33
130	Highly Pathogenic Avian Influenza Virus Infection of Mallards with Homo- and Heterosubtypic Immunity Induced by Low Pathogenic Avian Influenza Viruses. PLoS ONE, 2009, 4, e6706.	1.1	98
131	Efficacy of a commercial inactivated H5 influenza vaccine against highly pathogenic avian influenza H5N1 in waterfowl evaluated under field conditions. OIE Revue Scientifique Et Technique, 2009, 28, 275-291.	0.5	18
132	Phylogenetic analyses of highly pathogenic avian influenza virus isolates from Germany in 2006 and 2007 suggest at least three separate introductions of H5N1 virus. Veterinary Microbiology, 2008, 128, 243-252.	0.8	109
133	Rapid pathotyping of recent H5N1 highly pathogenic avian influenza viruses and of H5 viruses with low pathogenicity by RT-PCR and restriction enzyme cleavage pattern (RECP). Journal of Virological Methods, 2008, 154, 14-19.	1.0	14
134	Protection of cats against lethal influenza H5N1 challenge infection. Journal of General Virology, 2008, 89, 968-974.	1.3	28
135	Universal Primer Set for Amplification and Sequencing of HA ₀ Cleavage Sites of All Influenza A Viruses. Journal of Clinical Microbiology, 2008, 46, 2561-2567.	1.8	59
136	Pathogenicity of Highly Pathogenic Avian Influenza Virus (H5N1) in Adult Mute Swans. Emerging Infectious Diseases, 2008, 14, 1267-1270.	2.0	91
137	Experimental Infection of Cattle with Highly Pathogenic Avian Influenza Virus (H5N1). Emerging Infectious Diseases, 2008, 14, 1132-1134.	2.0	39
138	Avian Influenza Outbreaks in Germany â Development of New Avian Vaccines. Monographs in Virology, 2008, , 71-87.	0.6	4
139	Experimental Infection and Natural Contact Exposure of Dogs with Avian Influenza Virus (H5N1). Emerging Infectious Diseases, 2008, 14, 308-310.	2.0	73
140	Rapid and Highly Sensitive Pathotyping of Avian Influenza A H5N1 Virus by Using Real-Time Reverse Transcription-PCR. Journal of Clinical Microbiology, 2007, 45, 600-603.	1.8	77
141	Distribution of Lesions and Antigen of Highly Pathogenic Avian Influenza Virus A/Swan/Germany/R65/06 (H5N1) in Domestic Cats after Presumptive Infection by Wild Birds. Veterinary Pathology, 2007, 44, 261-268.	0.8	68
142	Molecular analysis of highly pathogenic avian influenza virus of subtype H5N1 isolated from wild birds and mammals in northern Germany. Journal of General Virology, 2007, 88, 554-558.	1.3	95
143	Pathology of Natural Infections by H5N1 Highly Pathogenic Avian Influenza Virus in Mute (Cygnus) Tj ETQq1 1	0.784314	rgBT /Overloc
144	Protection and Virus Shedding of Falcons Vaccinated against Highly Pathogenic Avian Influenza A Virus (H5N1). Emerging Infectious Diseases, 2007, 13, 1667-1674.	2.0	35

#	Article	IF	CITATIONS
145	Encephalitis in a Stone Marten (Martes foina) after Natural Infection with Highly Pathogenic Avian Influenza Virus Subtype H5N1. Journal of Comparative Pathology, 2007, 137, 155-159.	0.1	68
146	Antigenic characterization of phocine distemper virus causing mass mortality in 2002 and its relationship to other morbilliviruses. Archives of Virology, 2007, 152, 1559-1564.	0.9	5
147	Minute excretion of highly pathogenic avian influenza virus A/chicken/Indonesia/2003 (H5N1) from experimentally infected domestic pigeons (Columbia livia) and lack of transmission to sentinel chickens. Journal of General Virology, 2007, 88, 3089-3093.	1.3	29
148	Probiotic bacteria reduced duration and severity but not the incidence of common cold episodes in a double blind, randomized, controlled trial. Vaccine, 2006, 24, 6670-6674.	1.7	170
149	Neurotropism of Highly Pathogenic Avian Influenza Virus A/Chicken/Indonesia/2003 (H5N1) in Experimentally Infected Pigeons (Columbia livia f. domestica). Veterinary Pathology, 2006, 43, 463-470.	0.8	91
150	Influenza virus infections in mammals. Berliner Und Munchener Tierarztliche Wochenschrift, 2006, 119, 123-31.	0.7	17
151	Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. bifidum MF 20/5 on common cold episodes: A double blind, randomized, controlled trial. Clinical Nutrition, 2005, 24, 481-491.	2.3	235
152	Phocine Distemper in German Seals, 2002. Emerging Infectious Diseases, 2004, 10, 723-725.	2.0	49
153	Parvovirus B19. , 2004, , 976-980.		0
154	Chlamydia pneumoniae Infection and Restenosis in Patients with Coronary Heart Disease. Infection, 2003, 31, 149-154.	2.3	5
155	Seal gammaherpesviruses: identification, characterisation and epidemiology. Virus Research, 2003, 94, 25-31.	1.1	5
156	Genetic characterization of the unique short segment of Phocid herpesvirus type 1 reveals close relationships among alphaherpesviruses of hosts of the order Carnivora. Journal of General Virology, 2003, 84, 1427-1430.	1.3	8
157	Variations in the severity of phocid herpesvirus type 1Âinfections with age in grey seals and harbour seals. Veterinary Record, 2002, 150, 572-575.	0.2	14
158	Rapid Molecular Discrimination between Infection with Wild-Type Varicella-Zoster Virus and Varicella Vaccine Virus. Infection, 2002, 30, 320-322.	2.3	5
159	A candidate phocid herpesvirus vaccine that provides protection against feline herpesvirus infection. Vaccine, 2001, 20, 943-948.	1.7	7
160	Clinical Relevance of CagA-specific Antibodies Related to CagA Status of Heliobacter pylori Isolates Using Immunofluorescence Test and PCR. Infection, 2001, 29, 154-158.	2.3	9
161	New LightCycler PCR for Rapid and Sensitive Quantification of Parvovirus B19 DNA Guides Therapeutic Decision-Making in Relapsing Infections. Journal of Clinical Microbiology, 2001, 39, 4413-4419.	1.8	49
162	Analysis of the H gene, the central untranslated region and the proximal coding part of the F gene of wild-type and vaccine canine distemper viruses. Veterinary Microbiology, 1999, 69, 15-18.	0.8	20

#	Article	IF	CITATIONS
163	Rapid detection by reverse hybridization of mutations in the UL97 gene of human cytomegalovirus conferring resistance to ganciclovir. Journal of Clinical Virology, 1999, 13, 53-59.	1.6	11
164	Evaluation of the AmpliSensor PCR and the SHARP signal detection system for the early prediction of symptomatic CMV infection in solid transplant recipients. Journal of Clinical Virology, 1999, 13, 81-94.	1.6	8
165	Rapid and Sensitive Detection of Immunoglobulin M (IgM) and IgG Antibodies against Canine Distemper Virus by a New Recombinant Nucleocapsid Protein-Based Enzyme-Linked Immunosorbent Assay. Journal of Clinical Microbiology, 1999, 37, 1049-1056.	1.8	43
166	Genetic analysis of the central untranslated genome region and the proximal coding part of the F gene of wild-type and vaccine canine distemper morbilliviruses. Virus Genes, 1998, 17, 259-270.	0.7	26
167	Major immunogenic proteins of phocid herpesviruses and their relationships to proteins of canine and feline herpesviruses. Veterinary Quarterly, 1998, 20, 50-55.	3.0	12
168	SEROLOGIC SURVEY FOR PHOCID HERPESVIRUS-1 AND -2 IN MARINE MAMMALS FROM ALASKA AND RUSSIA. Journal of Wildlife Diseases, 1997, 33, 459-465.	0.3	34
169	Ageâ€related disease in recurrent outbreaks of phocid herpesvirus typeâ€l infections in a seal rehabilitation centre: evaluation of diagnostic methods. Veterinary Record, 1997, 140, 500-503.	0.2	20
170	Canine distemper virus — A morbillivirus in search of new hosts?. Trends in Microbiology, 1997, 5, 120-124.	3.5	127
171	Comparative analysis of the attachment protein gene (H) of dolphin morbillivirus. Virus Research, 1996, 40, 47-55.	1.1	33
172	Canine distemper virus in Lake Baikal seals (<i>Phoca sibirica</i>). Veterinary Record, 1996, 138, 437-439.	0.2	48
173	Characterisation of morbilliviruses isolated from Lake Baikal seals (Phoca sibirica). Veterinary Microbiology, 1995, 44, 251-259.	0.8	72
174	There is nothing permanent except change. The emergence of new virus diseases. Veterinary Microbiology, 1995, 43, 103-122.	0.8	43
175	Comparative immunological characterization of type-specific and conserved B-cell epitopes of pinniped, felid and canid herpesviruses. Archives of Virology, 1994, 136, 335-347.	0.9	32
176	Intertypic differentiation and detection of intratypic variants among canine and phocid morbillivirus isolates by kinetic neutralization using a novel immunoplaque assay. Journal of Virological Methods, 1993, 41, 77-92.	1.0	29
177	Viral Antigen Distribution in Organs of Cattle Experimentally Infected with Rinderpest Virus. Veterinary Pathology, 1993, 30, 544-554.	0.8	36
178	Round table on morbilliviruses in marine mammals. Veterinary Microbiology, 1992, 33, 287-295.	0.8	6
179	Analysis of antigenic differences between sixteen phocine distemper virus isolates and other morbilliviruses. Archives of Virology, 1991, 118, 261-268.	0.9	19
180	Antibodies against european phocine herpesvirus isolates detected in sera of Antarctic seals. Polar Biology, 1991, 11, 509.	0.5	24