JÃ[¨]ssica Margalef

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8323858/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing Methodologies to Synthesize αâ€5ulfenylated Carbonyl Compounds by Green Chemistry Metrics. ChemSusChem, 2021, 14, 808-823.	3.6	14
2	Indene Derived Phosphorusâ€Thioether Ligands for the Irâ€Catalyzed Asymmetric Hydrogenation of Olefins with Diverse Substitution Patterns and Different Functional Groups. Advanced Synthesis and Catalysis, 2021, 363, 4561-4574.	2.1	12
3	Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chemical Reviews, 2021, 121, 4373-4505.	23.0	302
4	Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coordination Chemistry Reviews, 2021, 446, 214120.	9.5	45
5	Proofreading experimentally assigned stereochemistry through Q2MM predictions in Pd-catalyzed allylic aminations. Nature Communications, 2021, 12, 6719.	5.8	5
6	Evolution in the metal-catalyzed asymmetric hydroformylation of 1,1′-disubstituted alkenes. Advances in Catalysis, 2021, 69, 181-215.	0.1	0
7	Asymmetric hydrogenation of imines. Advances in Catalysis, 2021, 68, 205-289.	0.1	3
8	Evolution of phosphorus–thioether ligands for asymmetric catalysis. Chemical Communications, 2020, 56, 10795-10808.	2.2	24
9	Effect of Ligand Chelation and Sacrificial Oxidant on the Integrity of Triazole-Based Carbene Iridium Water Oxidation Catalysts. Inorganic Chemistry, 2020, 59, 12337-12347.	1.9	18
10	Iridium-Catalyzed Asymmetric Hydrogenation. Topics in Organometallic Chemistry, 2020, , 153-205.	0.7	1
11	Rh-Catalyzed Asymmetric Hydroaminomethylation of α-Substituted Acrylamides: Application in the Synthesis of RWAY. Organic Letters, 2020, 22, 9036-9040.	2.4	9
12	High-Atom Economic Approach To Prepare Chiral α-Sulfenylated Ketones. Journal of Organic Chemistry, 2019, 84, 11219-11227.	1.7	9
13	A readily accessible and modular carbohydrate-derived thioether/selenoether-phosphite ligand library for Pd-catalyzed asymmetric allylic substitutions. Dalton Transactions, 2019, 48, 12632-12643.	1.6	17
14	Intramolecular substitutions of secondary and tertiary alcohols with chirality transfer by an iron(III) catalyst. Nature Communications, 2019, 10, 3826.	5.8	54
15	Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction of Naphthyl and Quinolyl Alcohols with Boronic Acids. Organic Letters, 2019, 21, 4782-4787.	2.4	22
16	Phosphiteâ€ŧhioether/selenoether Ligands from Carbohydrates: An Easily Accessible Ligand Library for the Asymmetric Hydrogenation of Functionalized and Unfunctionalized Olefins. ChemCatChem, 2019, 11, 2142-2168.	1.8	26
17	Computationally Guided Design of a Readily Assembled Phosphite–Thioether Ligand for a Broad Range of Pd-Catalyzed Asymmetric Allylic Substitutions. ACS Catalysis, 2018, 8, 3587-3601.	5.5	27
18	Phosphiteâ€Thiother Ligands Derived from Carbohydrates allow the Enantioswitchable Hydrogenation of Cyclic βâ€Enamides by using either Rh or Ir Catalysts. Chemistry - A European Journal, 2017, 23, 813-822.	1.7	21

#	Article	IF	CITATIONS
19	Thirdâ€Generation Amino Acid Furanosideâ€Based Ligands from <scp>d</scp> â€Mannose for the Asymmetric Transfer Hydrogenation of Ketones: Catalysts with an Exceptionally Wide Substrate Scope. Advanced Synthesis and Catalysis, 2016, 358, 4006-4018.	2.1	20
20	Asymmetric Catalyzed Allylic Substitution Using a Pd/P–S Catalyst Library with Exceptional High Substrate and Nucleophile Versatility: DFT and Pd-ï€-allyl Key Intermediates Studies. Organometallics, 2016, 35, 3323-3335.	1.1	21
21	Designing new readily available sugar-based ligands for asymmetric transfer hydrogenation of ketones. In the quest to expand the substrate scope. Tetrahedron Letters, 2016, 57, 1301-1308.	0.7	14
22	A Theoreticallyâ€Guided Optimization of a New Family of Modular P,Sâ€Ligands for Iridiumâ€Catalyzed Hydrogenation of Minimally Functionalized Olefins. Chemistry - A European Journal, 2014, 20, 12201-12214.	1.7	41
23	Application of pyranoside phosphite-pyridine ligands to enantioselective metal-catalyzed allylic substitutions and conjugate 1,4-additions. Tetrahedron: Asymmetry, 2013, 24, 995-1000.	1.8	27
24	The application of pyranoside phosphite-pyridine ligands to enantioselective Ir-catalyzed hydrogenations of highly unfunctionalized olefins. Tetrahedron: Asymmetry, 2012, 23, 945-951.	1.8	21
25	Enantioselective Pdâ€catalyzed allylic substitution using phosphiteâ€oxazoline PHOXâ€based ligands	1.0	2