
Lisa Gorski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8323797/publications.pdf Version: 2024-02-01

LISA CODSKI

#	Article	IF	CITATIONS
1	Salmonella enterica Virulence Genes Are Required for Bacterial Attachment to Plant Tissue. Applied and Environmental Microbiology, 2005, 71, 5685-5691.	3.1	236
2	Prevalence, Distribution, and Diversity of Salmonella enterica in a Major Produce Region of California. Applied and Environmental Microbiology, 2011, 77, 2734-2748.	3.1	216
3	Intraspecific Phylogeny and Lineage Group Identification Based on the prfA Virulence Gene Cluster of Listeria monocytogenesâ€. Journal of Bacteriology, 2004, 186, 4994-5002.	2.2	181
4	Prevalence of Salmonellae, Listeria monocytogenes, and Fecal Coliforms in Bulk Tank Milk on US Dairies. Journal of Dairy Science, 2004, 87, 2822-2830.	3.4	163
5	Occurrence of generic Escherichia coli, E. coli O157 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the Central California coast. International Journal of Food Microbiology, 2013, 165, 65-76.	4.7	138
6	Prevalence of shiga toxin producing Escherichia coli, Salmonella enterica, and Listeria monocytogenes at public access watershed sites in a California Central Coast agricultural region. Frontiers in Cellular and Infection Microbiology, 2014, 4, 30.	3.9	101
7	Synergistic Effects of Sodium Chloride, Glucose, and Temperature on Biofilm Formation by <i>Listeria monocytogenes</i> Serotype 1/2a and 4b Strains. Applied and Environmental Microbiology, 2010, 76, 1433-1441.	3.1	95
8	Serotyping of Listeria monocytogenes by Enzyme-Linked Immunosorbent Assay and Identification of Mixed-Serotype Cultures by Colony Immunoblotting. Journal of Clinical Microbiology, 2003, 41, 564-571.	3.9	90
9	Attachment of Listeria monocytogenes to Radish Tissue Is Dependent upon Temperature and Flagellar Motility. Applied and Environmental Microbiology, 2003, 69, 258-266.	3.1	85
10	Selective Enrichment Media Bias the Types of Salmonella enterica Strains Isolated from Mixed Strain Cultures and Complex Enrichment Broths. PLoS ONE, 2012, 7, e34722.	2.5	81
11	Listeria monocytogenes Subgroups IIIA, IIIB, and IIIC Delineate Genetically Distinct Populations with Varied Pathogenic Potential. Journal of Clinical Microbiology, 2006, 44, 4229-4233.	3.9	76
12	A Common Step for Changing Cell Shape in Fruiting Body and Starvation-Independent Sporulation of Myxococcus xanthus. Journal of Bacteriology, 2000, 182, 3553-3558.	2.2	64
13	Listeria monocytogenes Source Distribution Analysis Indicates Regional Heterogeneity and Ecological Niche Preference among Serotype 4b Clones. MBio, 2018, 9, .	4.1	57
14	Listeria monocytogenes Serotype 4b Strains Belonging to Lineages I and III Possess Distinct Molecular Features. Journal of Clinical Microbiology, 2006, 44, 214-217.	3.9	51
15	Previously uncharacterized Salmonella enterica genes required for swarming play a role in seedling colonization. Microbiology (United Kingdom), 2009, 155, 3701-3709.	1.8	46
16	Competitive Fitness of Listeria monocytogenes Serotype 1/2a and 4b Strains in Mixed Cultures with and without Food in the U.S. Food and Drug Administration Enrichment Protocol. Applied and Environmental Microbiology, 2006, 72, 776-783.	3.1	44
17	The Use of Flagella and Motility for Plant Colonization and Fitness by Different Strains of the Foodborne Pathogen Listeria monocytogenes. PLoS ONE, 2009, 4, e5142.	2.5	43
18	Targeted Mutagenesis of Ï, ⁵⁴ Activator Proteins in <i>Myxococcus xanthus</i> . Journal of Bacteriology, 1998, 180, 5896-5905.	2.2	40

Lisa Gorski

#	Article	IF	CITATIONS
19	Strain-Specific Differences in the Attachment of Listeria monocytogenes to Alfalfa Sprouts. Journal of Food Protection, 2004, 67, 2488-2495.	1.7	39
20	Diversity of Pulsed-Field Gel Electrophoresis Pulsotypes, Serovars, and Antibiotic Resistance AmongSalmonellalsolates from Wild Amphibians and Reptiles in the California Central Coast. Foodborne Pathogens and Disease, 2013, 10, 540-548.	1.8	34
21	A Ï, 54 Activator Protein Necessary for Spore Differentiation within the Fruiting Body of Myxococcus xanthus. Journal of Bacteriology, 2000, 182, 2438-2444.	2.2	29
22	Outer membrane polysaccharide deficiency in two nongliding mutants of Cytophaga johnsonae. Journal of Bacteriology, 1990, 172, 1250-1255.	2.2	28
23	Prevalence and Clonal Diversity of over 1,200 Listeria monocytogenes Isolates Collected from Public Access Waters near Produce Production Areas on the Central California Coast during 2011 to 2016. Applied and Environmental Microbiology, 2022, 88, e0035722.	3.1	24
24	ldentification of Genes Induced in Listeria monocytogenes during Growth and Attachment to Cut Cabbage, Using Differential Display. Applied and Environmental Microbiology, 2005, 71, 5236-5243.	3.1	23
25	Multiplex PCR analysis of fumonisin biosynthetic genes in fumonisin-nonproducing <i>Aspergillus niger</i> and <i>A. awamori</i> strains. Mycologia, 2013, 105, 277-284.	1.9	23
26	Concurrent Detection of Human Norovirus and Bacterial Pathogens in Water Samples from an Agricultural Region in Central California Coast. Frontiers in Microbiology, 2017, 8, 1560.	3.5	23
27	Role of uvrA in the Growth and Survival of Listeria monocytogenes under UV Radiation and Acid and Bile Stress. Journal of Food Protection, 2006, 69, 3031-3036.	1.7	22
28	The Majority of Genotypes of the Virulence Gene inlA Are Intact among Natural Watershed Isolates of Listeria monocytogenes from the Central California Coast. PLoS ONE, 2016, 11, e0167566.	2.5	20
29	Structural specificity of sugars that inhibit gliding motility of Cytophaga johnsonae. Archives of Microbiology, 1993, 160, 121-125.	2.2	18
30	The Sigma B Operon Is a Determinant of Fitness for aListeria monocytogenesSerotype 4b Strain in Soil. Foodborne Pathogens and Disease, 2011, 8, 699-704.	1.8	16
31	Comparison of Subtypes of Listeria monocytogenes Isolates from Naturally Contaminated Watershed Samples with and without a Selective Secondary Enrichment. PLoS ONE, 2014, 9, e92467.	2.5	14
32	Optimized Co-extraction and Quantification of DNA From Enteric Pathogens in Surface Water Samples Near Produce Fields in California. Frontiers in Microbiology, 2018, 9, 448.	3.5	14
33	Rapid Identification and Classification of Listeria spp. and Serotype Assignment of Listeria monocytogenes Using Fourier Transform-Infrared Spectroscopy and Artificial Neural Network Analysis. PLoS ONE, 2015, 10, e0143425.	2.5	13
34	Subtyping Listeria monocytogenes from Bulk Tank Milk Using Automated Repetitive Element–Based PCR. Journal of Food Protection, 2005, 68, 2707-2712.	1.7	12
35	Comparison of the Stress Response of Listeria monocytogenes Strains with Sprout Colonization. Journal of Food Protection, 2008, 71, 1556-1562.	1.7	11
36	Effect of Enrichment Medium on Real-Time Detection of Salmonella enterica from Lettuce and Tomato Enrichment Cultures. Journal of Food Protection, 2010, 73, 1047-1056.	1.7	9

Lisa Gorski

#	Article	IF	CITATIONS
37	Temporal sequence of the recovery of traits during phenotypic curing of a Cytophaga johnsonae motility mutant. Journal of Bacteriology, 1991, 173, 7534-7539.	2.2	8
38	Use of Phyllosphere-associated Lactic Acid Bacteria as Biocontrol Agents to Reduce Salmonella enterica Serovar Poona Growth on Cantaloupe Melons. Journal of Food Protection, 2019, 82, 2148-2153.	1.7	8
39	Isolation of <i>Listeria monocytogenes</i> from Food and Water: Official and Experimental Protocols. Current Protocols in Microbiology, 2014, 33, 9B.5.1-19.	6.5	6
40	New strategies for the enumeration of enteric pathogens in water. Environmental Microbiology Reports, 2019, 11, 765-776.	2.4	6
41	<i>Bacillus amyloliquefaciens</i> ALB65 Inhibits the Growth of <i>Listeria monocytogenes</i> on Cantaloupe Melons. Applied and Environmental Microbiology, 2020, 87, .	3.1	6
42	Phenotypic Identification. , 2008, , 139-168.		6
43	Serotype Assignment by Sero-agglutination, ELISA, and PCR. Methods in Molecular Biology, 2021, 2220, 57-78.	0.9	6
44	Salmonella enterica Serovar Diversity, Distribution, and Prevalence in Public-Access Waters from a Central California Coastal Leafy Green-Growing Region from 2011 to 2016. Applied and Environmental Microbiology, 2022, 88, AEM0183421.	3.1	6
45	Serotype Assignment by Sero-Agglutination, ELISA, and PCR. Methods in Molecular Biology, 2014, 1157, 41-61.	0.9	5
46	Complete Genome Sequences of Three Bacillus amyloliquefaciens Strains That Inhibit the Growth of Listeria monocytogenes <i>In Vitro</i> . Genome Announcements, 2018, 6, .	0.8	3
47	Growth and Survival of Attached Listeria on Lettuce and Stainless Steel Varies by Strain and Surface Type. Journal of Food Protection, 2021, 84, 903-911.	1.7	3
48	Complete Genome Sequence of Salmonella enterica subsp. <i>enterica</i> Serovar Thompson Strain RM6836. Genome Announcements, 2013, 1, .	0.8	2
49	Complete Genome Sequence of Lactococcus lactis subsp . lactis Strain 14B4, Which Inhibits the Growth of Salmonella enterica Serotype Poona In Vitro. Microbiology Resource Announcements, 2018, 7, .	0.6	2
50	Complete Genome Sequence of Enterobacter asburiae Strain AEB30, Determined Using Illumina and PacBio Sequencing. Microbiology Resource Announcements, 2021, 10, e0056221.	0.6	2
51	Attachment of Microorganisms to Fresh Produce. , 2005, , 33-73.		2
52	Complete Genome Sequences of Two Outbreak Strains of Salmonella enterica subsp. <i>enterica</i> Serovar Thompson Associated with Cilantro. Genome Announcements, 2015, 3, .	0.8	1
53	Complete Genomic Sequences of Two Salmonella enterica subsp. enterica Serogroup C2 (O:6,8) Strains from Central California. Genome Announcements, 2017, 5, .	0.8	1
54	Validation of an ampicillin selection protocol to enrich for mutants of Listeria monocytogenes unable to replicate on fresh produce. FEMS Microbiology Letters, 2019, 366, .	1.8	1

#	Article	IF	CITATIONS
55	Zoonotic Risks from Amphibians and Reptiles. Proceedings of the Vertebrate Pest Conference, 0, 25, .	0.1	0
56	Complete Genomic Sequences of Three Salmonella enterica subsp. <i>enterica</i> Serovar Muenchen Strains from an Orchard in San Joaquin County, California. Microbiology Resource Announcements, 2020, 9, .	0.6	0