Riichiro Ohta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8323735/publications.pdf

Version: 2024-02-01

1307594 677142 26 940 7 22 citations g-index h-index papers 26 26 26 1961 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Optically Tunable Aminoâ€Functionalized Graphene Quantum Dots. Advanced Materials, 2012, 24, 5333-5338.	21.0	756
2	Origin of N 1s spectrum in amorphous carbon nitride obtained by X-ray photoelectron spectroscopy. Thin Solid Films, 2003, 434, 296-302.	1.8	37
3	Visualization of human plasma fibrinogen adsorbed on highly oriented pyrolytic graphite by scanning probe microscopy. Surface Science, 2006, 600, 1674-1678.	1.9	26
4	Organosilane self-assembled monolayers directly linked to the diamond surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 2005-2009.	2.1	25
5	Amorphous carbon and carbon nitride multilayered films prepared by shielded arc ion plating. Thin Solid Films, 2005, 475, 308-312.	1.8	15
6	Nontoxic organic solvents identified using an <i>a priori</i> parameters. Chemical Communications, 2017, 53, 4096-4099.	4.1	15
7	UV Raman spectroscopic probing into nitrogen-doped hydrogenated amorphous carbon. Thin Solid Films, 2004, 457, 128-132.	1.8	7
8	Efficient Catalytic Electrode for CO ₂ Reduction Realized by Physisorbing Ni(cyclam) Molecules with Hydrophobicity Based on Hansen's Theory. ACS Applied Materials & Diterfaces, 2016, 8, 24315-24318.	8.0	7
9	Behavior of stress generated in semiconductor chips with high-temperature joints: Influence of mechanical properties of joint materials. Journal of Applied Physics, 2018, 123, .	2.5	7
10	Chemical Bonding States Analysis of Amorphous Carbon Nitride Films Supported by Ab-Initio Molecular Orbital Methods -Interpretation of X-ray Photoelectron Spectra Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2003, 54, 769-775.	0.2	6
11	Exploration of the chemical bonding forms of alkoxy-type organic monolayers directly attached to silicon. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1425-1427.	2.1	6
12	Length dependent behavior of a carbon nanotube interacting at liquid-air interface. Applied Physics Letters, 2008, 93, 023129.	3.3	6
13	Anti-agglomerating effect in vertically aligned carbon nanotubes derived by antisolvent precipitation of naphthalene. Chemical Communications, 2010, 46, 5259.	4.1	6
14	Electrodeposition of strontium apatite nanorod arrays and their cell compatibility. Ceramics International, 2017, 43, 9047-9052.	4.8	5
15	Prediction of Molecular Affinity on Solid Surfaces via Three-Dimensional Solubility Parameters Using Interfacial Free Energy as Interaction Threshold. Journal of Physical Chemistry C, 2019, 123, 13246-13252.	3.1	4
16	Plasma states and carbon film deposition in glow discharge connected to dielectric barrier discharge. Vacuum, 2018, 157, 155-158.	3.5	3
17	Depth profiles of the Fermi level at an amorphous-carbon nitride/SiO2/n-type-Si heterojunction interface obtained by Kelvin probe force microscopy. Diamond and Related Materials, 2006, 15, 1378-1382.	3.9	2
18	Synthesis of nitrogen-rich carbon nitride thin films via magnetic field-assisted inductively coupled plasma sputtering. Vacuum, 2006, 80, 752-755.	3.5	2

#	Article	IF	CITATIONS
19	Generation of dielectric barrier discharge using carbon nanotube sheets as an electrode under high-density fluids including high pressure gases, supercritical fluids, and liquids. Plasma Sources Science and Technology, 2019, 28, 075014.	3.1	2
20	Contribution of Primary Chemical Bonding States of Amorphous Carbon Nitride to Hardness. Electrochemical and Solid-State Letters, 2004, 7, C84.	2.2	1
21	Alignment-retainable nitrogenation of cylindrical carbon nanotubes by thermal reaction with ammonia following UV oxidation: chemical alteration effects on electrical conductivity. Chemical Communications, 2011, 47, 3873.	4.1	1
22	Liquid-Repellent Films Comprising Octamethylsilsesquioxane Selected Based on Three-Dimensional Solubility Parameters. Langmuir, 2020, 36, 2247-2254.	3.5	1
23	Fabrication of Metal Micropattern on Self-Assembled Monolayer by Site-Selective Electroless Plating and Pattern Transfer onto Polymer Sheet. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2005, 56, 113-117.	0.2	O
24	Enhanced field emission properties from carbon nanotube emitters grown on NiCr alloy surfaces with grain boundary effect. , $2008, \ldots$		0
25	粒化ç,ç´ã®åŒ–å¦çµå•̂状態ã•̈特性. Journal of the Japan Society for Precision Engineering, 2002, 68, 152	26 d.5 29.	O
26	Pitchâ€black surface stemming from selfâ€standing ZnFe ₂ O ₄ nanowalls. Nano Select, 0, , .	3.7	0