Liang Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8323630/publications.pdf Version: 2024-02-01

LIANC SONC

#	Article	IF	CITATIONS
1	In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light: Science and Applications, 2018, 7, 91.	7.7	289
2	Protein-assisted fabrication of nano-reduced graphene oxide for combined inÂvivo photoacoustic imaging and photothermal therapy. Biomaterials, 2013, 34, 5236-5243.	5.7	276
3	Ultrasmall Cu _{2â€<i>x</i>} S Nanodots for Highly Efficient Photoacoustic Imagingâ€Guided Photothermal Therapy. Small, 2015, 11, 2275-2283.	5.2	184
4	Single‣ayer MoS ₂ Nanosheets with Amplified Photoacoustic Effect for Highly Sensitive Photoacoustic Imaging of Orthotopic Brain Tumors. Advanced Functional Materials, 2016, 26, 8715-8725.	7.8	136
5	Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines. Biomaterials, 2015, 73, 142-148.	5.7	111
6	Intravascular Optical-Resolution Photoacoustic Tomography with a 1.1 mm Diameter Catheter. PLoS ONE, 2014, 9, e92463.	1.1	103
7	Tocilizumab–Conjugated Polymer Nanoparticles for NIRâ€II Photoacousticâ€Imagingâ€Guided Therapy of Rheumatoid Arthritis. Advanced Materials, 2020, 32, e2003399.	11.1	88
8	A facile synthesis of versatile Cu2â´`xS nanoprobe for enhanced MRI and infrared thermal/photoacoustic multimodal imaging. Biomaterials, 2015, 57, 12-21.	5.7	83
9	Adjuvant Photothermal Therapy Inhibits Local Recurrences after Breast-Conserving Surgery with Little Skin Damage. ACS Nano, 2018, 12, 662-670.	7.3	69
10	India Ink Incorporated Multifunctional Phase-transition Nanodroplets for Photoacoustic/Ultrasound Dual-modality Imaging and Photoacoustic Effect Based Tumor Therapy. Theranostics, 2014, 4, 1026-1038.	4.6	67
11	In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes. Nanoscale, 2014, 6, 14270-14279.	2.8	67
12	Linear array-based real-time photoacoustic imaging system with a compact coaxial excitation handheld probe for noninvasive sentinel lymph node mapping. Biomedical Optics Express, 2018, 9, 1408.	1.5	66
13	High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter. Journal of Biomedical Optics, 2015, 20, 1.	1.4	65
14	Reflection-mode in vivo photoacoustic microscopy with subwavelength lateral resolution. Biomedical Optics Express, 2014, 5, 4235.	1.5	59
15	Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging. Nanoscale Research Letters, 2016, 11, 85.	3.1	57
16	<i>In vivo</i> photoacoustic/ultrasonic dualâ€modality endoscopy with a miniaturized full fieldâ€ofâ€view catheter. Journal of Biophotonics, 2018, 11, e201800034.	1.1	55
17	<i>In vivo</i> assessment of inflammation in carotid atherosclerosis by noninvasive photoacoustic imaging. Theranostics, 2020, 10, 4694-4704.	4.6	52
18	Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy. Photoacoustics, 2019, 15, 100143.	4.4	48

LIANG SONG

#	Article	IF	CITATIONS
19	Hybrid MoSe ₂ –indocyanine green nanosheets as a highly efficient phototheranostic agent for photoacoustic imaging guided photothermal cancer therapy. Biomaterials Science, 2018, 6, 1503-1516.	2.6	46
20	Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Acta Biomaterialia, 2016, 42, 389-399.	4.1	44
21	Novel small molecular dye-loaded lipid nanoparticles with efficient near-infrared-II absorption for photoacoustic imaging and photothermal therapy of hepatocellular carcinoma. Biomaterials Science, 2019, 7, 3165-3177.	2.6	44
22	Fluorescent and photoacoustic bifunctional probe for the detection of ascorbic acid in biological fluids, living cells and <i>in vivo</i> . Nanoscale, 2018, 10, 17834-17841.	2.8	43
23	A 1064 nm excitable semiconducting polymer nanoparticle for photoacoustic imaging of gliomas. Nanoscale, 2019, 11, 7754-7760.	2.8	42
24	Highly Sensitive MoS2–Indocyanine Green Hybrid for Photoacoustic Imaging of Orthotopic Brain Glioma at Deep Site. Nano-Micro Letters, 2018, 10, 48.	14.4	41
25	Advances in Imaging Techniques and Genetically Encoded Probes for Photoacoustic Imaging. Theranostics, 2016, 6, 2414-2430.	4.6	38
26	Ultrasmall hybrid protein–copper sulfide nanoparticles for targeted photoacoustic imaging of orthotopic hepatocellular carcinoma with a high signal-to-noise ratio. Biomaterials Science, 2019, 7, 92-103.	2.6	36
27	The integrated high-resolution reflection-mode photoacoustic and fluorescence confocal microscopy. Photoacoustics, 2019, 14, 12-18.	4.4	35
28	A new deep learning method for image deblurring in optical microscopic systems. Journal of Biophotonics, 2020, 13, e201960147.	1.1	35
29	Nonlinear mechanisms in photoacoustics—Powerful tools in photoacoustic imaging. Photoacoustics, 2021, 22, 100243.	4.4	35
30	Expanded porphyrins: functional photoacoustic imaging agents that operate in the NIR-II region. Chemical Science, 2021, 12, 9916-9921.	3.7	34
31	Longitudinal label-free optical-resolution photoacoustic microscopy of tumor angiogenesis in vivo. Quantitative Imaging in Medicine and Surgery, 2015, 5, 23-9.	1.1	34
32	Fully integrated reflection-mode photoacoustic, two-photon and second harmonic generation microscopy in vivo. Scientific Reports, 2016, 6, 32240.	1.6	33
33	Functional Photoacoustic Imaging of Gastric Acid Secretion Using pHâ€Responsive Polyaniline Nanoprobes. Small, 2016, 12, 4690-4696.	5.2	32
34	Gold nanocage decorated pH-sensitive micelle for highly effective photothermo-chemotherapy and photoacoustic imaging. Acta Biomaterialia, 2017, 64, 223-236.	4.1	30
35	Förster Resonance Energy Transfer-Based Dual-Modal Theranostic Nanoprobe for <i>In Situ</i> Visualization of Cancer Photothermal Therapy. Theranostics, 2018, 8, 410-422.	4.6	26
36	Quantitative analysis on in vivo tumorâ€microvascular images from opticalâ€resolution photoacoustic microscopy. Journal of Biophotonics, 2019, 12, e201800421.	1.1	24

LIANG SONG

#	Article	IF	CITATIONS
37	Multi-spectral intravascular photoacoustic/ultrasound/optical coherence tomography tri-modality system with a fully-integrated 0.9-mm full field-of-view catheter for plaque vulnerability imaging. Biomedical Optics Express, 2021, 12, 1934.	1.5	20
38	High-speed, sparse-sampling three-dimensional photoacoustic computed tomography <i>in vivo</i> based on principal component analysis. Journal of Biomedical Optics, 2016, 21, 076007.	1.4	19
39	In vivo intravascular photoacoustic imaging at a high speed of 100 frames per second. Biomedical Optics Express, 2020, 11, 6721.	1.5	17
40	Compressed sensing based virtual-detector photoacoustic microscopy <i>in vivo</i> . Journal of Biomedical Optics, 2014, 19, 036003.	1.4	16
41	IVUSIVPA hybrid intravascular molecular imaging of angiogenesis in atherosclerotic plaques via RGDfk peptide-targeted nanoprobes. Photoacoustics, 2021, 22, 100262.	4.4	16
42	Dictionary learning sparse-sampling reconstruction method for in-vivo 3D photoacoustic computed tomography. Biomedical Optics Express, 2019, 10, 1660.	1.5	14
43	In vivo transrectal imaging of canine prostate with a sensitive and compact handheld transrectal array photoacoustic probe for early diagnosis of prostate cancer. Biomedical Optics Express, 2019, 10, 1707.	1.5	14
44	Background-suppressed tumor-targeted photoacoustic imaging using bacterial carriers. Proceedings of the United States of America, 2022, 119, .	3.3	14
45	Visualizing tumor angiogenesis and boundary with polygon-scanning multiscale photoacoustic microscopy. Photoacoustics, 2022, 26, 100342.	4.4	14
46	Timely coordinated phototherapy mediated by mesoporous organosilica coated triangular gold nanoprisms. Journal of Materials Chemistry B, 2018, 6, 3865-3875.	2.9	13
47	Flexibly adjustable depth-of-focus photoacoustic microscopy with spatial light modulation. Applied Physics Letters, 2018, 113, 163502.	1.5	11
48	Breaking Acoustic Limit of Optical Focusing Using Photoacousticâ€Guided Wavefront Shaping. Laser and Photonics Reviews, 2021, 15, 2000594.	4.4	9
49	Biomedical photoacoustics in China. Photoacoustics, 2013, 1, 43-48.	4.4	8
50	A Low Cost Sensitive Transrectal Photoacoustic Probe With Single-Fiber Bright-Field Illumination for <i>In Vivo</i> Canine Prostate Imaging and Real-Time Biopsy Needle Guidance. IEEE Sensors Journal, 2020, 20, 10974-10980.	2.4	8
51	Photoacoustic visualization of the fluence rate dependence of photodynamic therapy. Biomedical Optics Express, 2020, 11, 4203.	1.5	7
52	Targeted imaging of orthotopic prostate cancer by using clinical transformable photoacoustic molecular probe. BMC Cancer, 2020, 20, 419.	1.1	6
53	Optical fiber-based handheld polarized photoacoustic computed tomography for detecting anisotropy of tissues. Quantitative Imaging in Medicine and Surgery, 2022, 12, 2238-2246.	1.1	5
54	Compressed sensing photoacoustic tomography in vivo in time and frequency domains. , 2012, , .		4

0

#	Article	IF	CITATIONS
55	Achieving depth-independent lateral resolution in AR-PAM using the synthetic-aperture focusing technique. Photoacoustics, 2022, 26, 100328.	4.4	3

Nanoparticles for Photoacoustic Imaging. , 2016, , 159-187.