
Aniketa A Shinde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8323455/publications.pdf Version: 2024-02-01

ANIVETA A SHINDE

#	Article	IF	CITATIONS
1	Materials structure–property factorization for identification of synergistic phase interactions in complex solar fuels photoanodes. Npj Computational Materials, 2022, 8, .	8.7	3
2	Band Edge Energy Tuning through Electronic Character Hybridization in Ternary Metal Vanadates. Chemistry of Materials, 2021, 33, 7242-7253.	6.7	7
3	Quaternary Oxide Photoanode Discovery Improves the Spectral Response and Photovoltage of Copper Vanadates. Matter, 2020, 3, 1614-1630.	10.0	16
4	Fermi Level Engineering of Passivation and Electron Transport Materials for pâ€Type CuBi 2 O 4 Employing a Highâ€Throughput Methodology. Advanced Functional Materials, 2020, 30, 2000948.	14.9	28
5	Successes and Opportunities for Discovery of Metal Oxide Photoanodes for Solar Fuels Generators. ACS Energy Letters, 2020, 5, 1413-1421.	17.4	30
6	Combinatorial screening yields discovery of 29 metal oxide photoanodes for solar fuel generation. Journal of Materials Chemistry A, 2020, 8, 4239-4243.	10.3	13
7	Functional mapping reveals mechanistic clusters for OER catalysis across (Cu–Mn–Ta–Co–Sn–Fe)O _x composition and pH space. Materials Horizons, 2019, 6, 1251	1- <mark>12</mark> 58.	22
8	Unveiling new stable manganese based photoanode materials <i>via</i> theoretical high-throughput screening and experiments. Chemical Communications, 2019, 55, 13418-13421.	4.1	18
9	Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes. Chemical Communications, 2018, 54, 4625-4628.	4.1	2
10	Reactor design and integration with product detection to accelerate screening of electrocatalysts for carbon dioxide reduction. Review of Scientific Instruments, 2018, 89, 124102.	1.3	11
11	Balancing Surface Passivation and Catalysis with Integrated BiVO4/(Fe–Ce)Ox Photoanodes in pH 9 Borate Electrolyte. ACS Applied Energy Materials, 2018, , .	5.1	2
12	Bi-Containing n-FeWO4 Thin Films Provide the Largest Photovoltage and Highest Stability for a Sub-2 eV Band Gap Photoanode. ACS Energy Letters, 2018, 3, 2769-2774.	17.4	20
13	Rutile Alloys in the Mn–Sb–O System Stabilize Mn ³⁺ To Enable Oxygen Evolution in Strong Acid. ACS Catalysis, 2018, 8, 10938-10948.	11.2	97
14	Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3040-3043.	7.1	157
15	Electrochemical Stability of Metastable Materials. Chemistry of Materials, 2017, 29, 10159-10167.	6.7	168
16	Discovery of Manganese-Based Solar Fuel Photoanodes via Integration of Electronic Structure Calculations, Pourbaix Stability Modeling, and High-Throughput Experiments. ACS Energy Letters, 2017, 2, 2307-2312.	17.4	36
17	Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode. Chemistry of Materials, 2017, 29, 10027-10036.	6.7	17
18	Stability and self-passivation of copper vanadate photoanodes under chemical, electrochemical, and photoelectrochemical operation. Physical Chemistry Chemical Physics, 2016, 18, 9349-9352.	2.8	56

ANIKETA A SHINDE

#	Article	IF	CITATIONS
19	Discovery of Fe–Ce Oxide/BiVO ₄ Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings. ACS Applied Materials & Interfaces, 2016, 8, 23696-23705.	8.0	35
20	High Throughput Discovery of Solar Fuels Photoanodes in the CuO–V ₂ O ₅ System. Advanced Energy Materials, 2015, 5, 1500968.	19.5	82
21	Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements. Journal of Materials Research, 2015, 30, 442-450.	2.6	16
22	Parallel Electrochemical Treatment System and Application for Identifying Acid-Stable Oxygen Evolution Electrocatalysts. ACS Combinatorial Science, 2015, 17, 71-75.	3.8	12
23	High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn–Co–Ta–Sb)O x Composition Space. Electrocatalysis, 2015, 6, 229-236.	3.0	53
24	Structural and Chemical Properties of Gold Rare Earth Disilicide Coreâ^'Shell Nanowires. ACS Nano, 2011, 5, 477-485.	14.6	4
25	First principles studies of adsorption of Pd, Ag, Pt, and Au on yttrium disilicide nanowires. Chemical Physics Letters, 2008, 454, 327-331.	2.6	3
26	An atomistic view of structural and electronic properties of rare earth ensembles on Si(001) substrates. Chemical Physics Letters, 2008, 466, 159-164.	2.6	8
27	A new parameter to define interplanetary coronal mass ejections. Advances in Space Research, 2005, 35, 2178-2184.	2.6	35
28	ON DEFINING INTERPLANETARY CORONAL MASS EJECTIONs FROM FLUID PARAMETERS. Solar Physics, 2005, 229, 323-344.	2.5	29