Masao Matsuhashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8322865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-frequency Electric Cortical Stimulation Has an Inhibitory Effect on Epileptic Focus in Mesial Temporal Lobeâ€∫Epilepsy. Epilepsia, 2002, 43, 491-495.	5.1	123
2	Low-frequency electric cortical stimulation decreases interictal and ictal activity in human epilepsy. Seizure: the Journal of the British Epilepsy Association, 2006, 15, 520-527.	2.0	75
3	Intracranially recorded ictal direct current shifts may precede high frequency oscillations in human epilepsy. Clinical Neurophysiology, 2015, 126, 47-59.	1.5	70
4	Maturational change of parallel auditory processing in school-aged children revealed by simultaneous recording of magnetic and electric cortical responses. Clinical Neurophysiology, 2002, 113, 1470-1484.	1.5	66
5	Sleep modulates cortical connectivity and excitability in humans: Direct evidence from neural activity induced by singleâ€pulse electrical stimulation. Human Brain Mapping, 2015, 36, 4714-4729.	3.6	59
6	Ictal wideband ECoG: Direct comparison between ictal slow shifts and high frequency oscillations. Clinical Neurophysiology, 2011, 122, 1500-1504.	1.5	43
7	Left anterior temporal cortex actively engages in speech perception: A direct cortical stimulation study. Neuropsychologia, 2011, 49, 1350-1354.	1.6	39
8	Low-dose perampanel improves refractory cortical myoclonus by the dispersed and suppressed paroxysmal depolarization shifts in the sensorimotor cortex. Clinical Neurophysiology, 2019, 130, 1804-1812.	1.5	38
9	Categorical speech perception during active discrimination of consonants and vowels. Neuropsychologia, 2014, 64, 13-23.	1.6	35
10	Motor-related functional subdivisions of human lateral premotor cortex: epicortical recording in conditional visuomotor task. Clinical Neurophysiology, 2003, 114, 1102-1115.	1.5	34
11	Active direct current (DC) shifts and "Red slow― two new concepts for seizure mechanisms and identification of the epileptogenic zone. Neuroscience Research, 2020, 156, 95-101.	1.9	33
12	The neural tides of sleep and consciousness revealed by single-pulse electrical brain stimulation. Sleep, 2019, 42, .	1.1	24
13	Gait-Synchronized Rhythmic Brain Stimulation Improves Poststroke Gait Disturbance. Stroke, 2019, 50, 3205-3212.	2.0	22
14	Evaluation of movement and brain activity. Clinical Neurophysiology, 2021, 132, 2608-2638.	1.5	22
15	High frequency activity overriding cortico-cortical evoked potentials reflects altered excitability in the human epileptic focus. Clinical Neurophysiology, 2017, 128, 1673-1681.	1.5	20
16	Bereitschaftspotential augmentation by neuro-feedback training in Parkinson's disease. Clinical Neurophysiology, 2013, 124, 1398-1405.	1.5	19
17	Contralateral dominance of corticomuscular coherence for both sides of the tongue during human tongue protrusion: An MEG study. NeuroImage, 2014, 101, 245-255.	4.2	19
18	High-frequency oscillations in a spectrum of pediatric epilepsies characterized by sleep-activated spikes in scalp EEG. Clinical Neurophysiology, 2019, 130, 1971-1980.	1.5	19

Masao Matsuhashi

#	Article	IF	CITATIONS
19	Cortico-muscular synchronization by proprioceptive afferents from the tongue muscles during isometric tongue protrusion. Neurolmage, 2016, 128, 284-292.	4.2	16
20	Anodal transcranial patterned stimulation of the motor cortex during gait can induce activity-dependent corticospinal plasticity to alter human gait. PLoS ONE, 2018, 13, e0208691.	2.5	14
21	Gaitâ€combined transcranial alternating current stimulation modulates cortical control of muscle activities during gait. European Journal of Neuroscience, 2020, 52, 4791-4802.	2.6	12
22	Cortical Distribution of Fragile Periventricular Anastomotic Collateral Vessels in Moyamoya Disease: An Exploratory Cross-Sectional Study of Japanese Patients with Moyamoya Disease. American Journal of Neuroradiology, 2020, 41, 2243-2249.	2.4	12
23	Evaluation of lip sensory disturbance using somatosensory evoked magnetic fields. Clinical Neurophysiology, 2014, 125, 363-369.	1.5	11
24	Long-term follow-up of cortical hyperexcitability in Japanese Unverricht–Lundborg disease. Seizure: the Journal of the British Epilepsy Association, 2014, 23, 746-750.	2.0	11
25	Phasic REM Transiently Approaches Wakefulness in the Human Cortex—A Single-Pulse Electrical Stimulation Study. Sleep, 2017, 40, .	1.1	10
26	Gait-synchronized oscillatory brain stimulation modulates common neural drives to ankle muscles in patients after stroke: A pilot study. Neuroscience Research, 2020, 156, 256-264.	1.9	10
27	Different Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation. PLoS ONE, 2015, 10, e0130461.	2.5	9
28	We could predict good responders to vagus nerve stimulation: A surrogate marker by slow cortical potential shift. Clinical Neurophysiology, 2017, 128, 1583-1589.	1.5	9
29	Longitudinal correspondence of epilepsy and scalp EEG fast (40–200ÂHz) oscillations in pediatric patients with tuberous sclerosis complex. Brain and Development, 2020, 42, 663-674.	1.1	8
30	Cortico-cortical evoked potential by single-pulse electrical stimulation is a generally safe procedure. Clinical Neurophysiology, 2021, 132, 1033-1040.	1.5	7
31	Neural correlates of perceptual grouping effects in the processing of sound omission by musicians and nonmusicians. Hearing Research, 2015, 319, 25-31.	2.0	6
32	Intraoperative cortico-cortical evoked potentials show disconnection of the motor cortex from the epileptogenic network during subtotal hemispherotomy. Clinical Neurophysiology, 2018, 129, 455-457.	1.5	6
33	Engagement of cortico-cortical and cortico-subcortical networks in a patient with epileptic spasms: An integrated neurophysiological study. Clinical Neurophysiology, 2020, 131, 2255-2264.	1.5	6
34	Magnetoencephalography with temporal spread imaging to visualize propagation of epileptic activity. Clinical Neurophysiology, 2017, 128, 734-743.	1.5	5
35	Entrainment of chewing rhythm by gait speed during treadmill walking in humans. Neuroscience Research, 2020, 156, 88-94.	1.9	5
36	Scalp EEG Could Record Both Ictal Direct Current Shift and High-Frequency Oscillation Together Even With a Time Constant of 2 Seconds. Journal of Clinical Neurophysiology, 2020, 37, 191-194.	1.7	4

Masao Matsuhashi

#	Article	IF	CITATIONS
37	A study on the relationship between non-epileptic fast (40 – 200ÂHz) oscillations in scalp EEG and development in children. Brain and Development, 2021, 43, 904-911.	1.1	4
38	Functional cortical localization of tongue movements using corticokinematic coherence with a deep learning-assisted motion capture system. Scientific Reports, 2022, 12, 388.	3.3	4
39	Do scalp-recorded slow potentials during neuro-feedback training reflect the cortical activity?. Clinical Neurophysiology, 2018, 129, 1884-1890.	1.5	3
40	Appearance of bitemporal periodic EEG activity in the last stage of Gerstmann-StrÃ ¤ ssler-Scheinker syndrome (Pro102Leu): A case report. Clinical Neurology and Neurosurgery, 2021, 204, 106602.	1.4	3
41	Two types of clinical ictal direct current shifts in invasive EEG of intractable focal epilepsy identified by waveform cluster analysis. Clinical Neurophysiology, 2022, 137, 113-121.	1.5	3
42	Mathematical structures for epilepsy: High-frequency oscillation and interictal epileptic slow (red) Tj ETQq0 0 0 rg	gB <u>T</u> /Overl	ock 10 Tf 50
43	Event-Related Desynchronization and Corticomuscular Coherence Observed During Volitional Swallow by Electroencephalography Recordings in Humans. Frontiers in Human Neuroscience, 2021, 15, 643454.	2.0	2
44	Marked response to perampanel: A decade-long course of giant somatosensory evoked potentials in Unverricht-Lundborg disease. Clinical Neurophysiology, 2021, 132, 2329-2331.	1.5	1
45	Case Report: Event-Related Desynchronization Observed During Volitional Swallow by Electroencephalography Recordings in ALS Patients With Dysphagia. Frontiers in Behavioral Neuroscience, 2022, 16, 798375.	2.0	1
46	Electrical cortical stimulations modulate spike and post-spike slow-related high-frequency activities in human epileptic foci. Clinical Neurophysiology, 2020, 131, 1741-1754.	1.5	0

47	Appraisal of definition of baseline length for somatosensory evoked magnetic fields. Journal of Neuroscience Methods, 2021, 359, 109213.	2.5	0
48	Long Time Constant May Endorses Sharp Waves and Spikes Than Sharp Transients in Scalp Electroencephalography: A Comparison of Both After-Slow Among Different Time Constant and High-Frequency Activity Analysis. Frontiers in Human Neuroscience, 2021, 15, 748893.	2.0	0
49	Neural Sources of Vagus Nerve Stimulation–Induced Slow Cortical Potentials. Neuromodulation, 2022, 25, 407-413.	0.8	0