
Andreas Pfützner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8322852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improvement of Cardiovascular Risk Markers by Pioglitazone Is Independent From Glycemic Control. Journal of the American College of Cardiology, 2005, 45, 1925-1931.	2.8	270
2	Impact of rosiglitazone on beta-cell function, insulin resistance, and adiponectin concentrations: results from a double-blind oral combination study with glimepiride. Metabolism: Clinical and Experimental, 2006, 55, 20-25.	3.4	223
3	High-Sensitivity C-Reactive Protein as Cardiovascular Risk Marker in Patients with Diabetes Mellitus. Diabetes Technology and Therapeutics, 2006, 8, 28-36.	4.4	167
4	Use of insulin lispro in continuous subcutaneous insulin infusion treatment. Results of a multicenter trial. German Humalog-CSII Study Group Diabetes Care, 1999, 22, 784-788.	8.6	166
5	Fasting Intact Proinsulin Is a Highly Specific Predictor of Insulin Resistance in Type 2 Diabetes. Diabetes Care, 2004, 27, 682-687.	8.6	139
6	Pilot Study for Assessment of Optimal Frequency for Changing Catheters in Insulin Pump Therapy—Trouble Starts on Day 3. Journal of Diabetes Science and Technology, 2010, 4, 976-982.	2.2	81
7	Technical Aspects of the Parkes Error Grid. Journal of Diabetes Science and Technology, 2013, 7, 1275-1281.	2.2	81
8	Addition of liraglutide in patients with Type 2 diabetes well controlled on metformin monotherapy improves several markers of vascular function. Diabetic Medicine, 2012, 29, 1115-1118.	2.3	60
9	Hematocrit Interference of Blood Clucose Meters for Patient Self-Measurement. Journal of Diabetes Science and Technology, 2013, 7, 179-189.	2.2	51
10	Biological background and role of adiponectin as marker for insulin resistance and cardiovascular risk. Clinical Laboratory, 2005, 51, 489-94.	0.5	49
11	Role of Intact Proinsulin in Diagnosis and Treatment of Type 2 Diabetes Mellitus. Diabetes Technology and Therapeutics, 2004, 6, 405-412.	4.4	44
12	Using Insulin Infusion Sets in CSII for Longer Than the Recommended Usage Time Leads to a High Risk for Adverse Events. Journal of Diabetes Science and Technology, 2015, 9, 1292-1298.	2.2	43
13	Dynamic Electrochemistry Corrects for Hematocrit Interference on Blood Clucose Determinations with Patient Self-Measurement Devices. Journal of Diabetes Science and Technology, 2011, 5, 1167-1175.	2.2	40
14	Pioglitazone: an antidiabetic drug with cardiovascular therapeutic effects. Expert Review of Cardiovascular Therapy, 2006, 4, 445-459.	1.5	34
15	Cardiovascular Effects of Disturbed Insulin Activity in Metabolic Syndrome and in Type 2 Diabetic Patients. Hormone and Metabolic Research, 2009, 41, 123-131.	1.5	34
16	Euglycemic ketosis in patients with type 2 diabetes on SGLT2-inhibitor therapy—an emerging problem and solutions offered by diabetes technology. Endocrine, 2017, 56, 212-216.	2.3	30
17	IRIS II Study: Intact Proinsulin Is Confirmed as a Highly Specific Indicator for Insulin Resistance in a Large Cross-Sectional Study Design. Diabetes Technology and Therapeutics, 2005, 7, 478-486.	4.4	26
18	Evaluation of a New Noninvasive Glucose Monitoring Device by Means of Standardized Meal Experiments. Journal of Diabetes Science and Technology, 2018, 12, 1178-1183.	2.2	24

Andreas Pfützner

#	Article	IF	CITATIONS
19	Clinical and Laboratory Evaluation of Specific Chemiluminescence Assays for Intact and Total Proinsulin. Clinical Chemistry and Laboratory Medicine, 2003, 41, 1234-8.	2.3	22
20	Why Do People With Diabetes Have a High Risk for Severe COVID-19 Disease?—A Dental Hypothesis and Possible Prevention Strategy. Journal of Diabetes Science and Technology, 2020, 14, 769-771.	2.2	22
21	Postprandial Vascular Effects of VIAject Compared With Insulin Lispro and Regular Human Insulin in Patients With Type 2 Diabetes. Diabetes Care, 2010, 33, 116-120.	8.6	20
22	Effect of vildagliptin compared to glimepiride on postprandial proinsulin processing in the β cell of patients with type 2 diabetes mellitus. Diabetes, Obesity and Metabolism, 2013, 15, 576-579.	4.4	20
23	The Switch from Sulfonylurea to Preprandial Short- Acting Insulin Analog Substitution Has an Immediate and Comprehensive β-Cell Protective Effect in Patients with Type 2 Diabetes Mellitus. Diabetes Technology and Therapeutics, 2006, 8, 375-384.	4.4	19
24	Effect of Insulin Glulisine on Microvascular Blood Flow and Endothelial Function in the Postprandial State. Diabetes Care, 2008, 31, 1021-1025.	8.6	17
25	Determination of Hematocrit Interference in Blood Samples Derived from Patients with Different Blood Glucose Concentrations. Journal of Diabetes Science and Technology, 2013, 7, 170-178.	2.2	16
26	Performance of blood glucose meters in compliance with current and future clinical ISO15197 accuracy criteria. Current Medical Research and Opinion, 2014, 30, 185-190.	1.9	16
27	Evaluation of Hematocrit Interference With MyStar Extra and Seven Competitive Devices. Journal of Diabetes Science and Technology, 2015, 9, 262-267.	2.2	15
28	A biomarker concept for assessment of insulin resistance, beta-cell function and chronic systemic inflammation in type 2 diabetes mellitus. Clinical Laboratory, 2008, 54, 485-90.	0.5	14
29	Blood Glucose Meters Employing Dynamic Electrochemistry are Stable against Hematocrit Interference in a Laboratory Setting. Journal of Diabetes Science and Technology, 2013, 7, 1530-1537.	2.2	12
30	The Barmer study: impact of standardized warming of the injection site to enhance insulin absorption and reduce prandial insulin requirements and hypoglycemia in obese patients with diabetes mellitus. Current Medical Research and Opinion, 2014, 30, 753-760.	1.9	11
31	In Type 2 Diabetes Patients, Insulin Glargine is Associated with Lower Postprandial Release of Intact Proinsulin Compared with Sulfonylurea Treatment. Journal of Diabetes Science and Technology, 2012, 6, 634-640.	2.2	10
32	Real-World Data Collection Regarding Titration Algorithms for Insulin Glargine in Patients With Type 2 Diabetes Mellitus. Journal of Diabetes Science and Technology, 2016, 10, 1122-1129.	2.2	10
33	Elevated Intact Proinsulin Levels During an Oral Glucose Challenge Indicate Progressive ß-Cell Dysfunction and May Be Predictive for Development of Type 2 Diabetes. Journal of Diabetes Science and Technology, 2015, 9, 1307-1312.	2.2	9
34	Clinical and laboratory evaluation of a new specific ELISA for intact proinsulin. Clinical Laboratory, 2005, 51, 243-9.	0.5	9
35	Successful Performance of Laboratory Investigations with Blood Glucose Meters Employing a Dynamic Electrochemistry-Based Correction Algorithm Is Dependent on Careful Sample Handling. Diabetes Technology and Therapeutics, 2016, 18, 650-656.	4.4	8
36	System Accuracy Assessment of a Blood Glucose Meter With Wireless Internet Access Associated With Unusual Hypoglycemia Patterns in Clinical Trials. Journal of Diabetes Science and Technology, 2019, 13, 507-513.	2.2	8

Andreas Pfützner

#	Article	IF	CITATIONS
37	Mesenchymal Stem Cell Differentiation into Adipocytes Is Equally Induced by Insulin and Proinsulin <i>In Vitro</i> . International Journal of Stem Cells, 2017, 10, 154-159.	1.8	7
38	Laboratory Evaluation of Linearity, Repeatability, and Hematocrit Interference With an Internet-Enabled Blood Glucose Meter. Journal of Diabetes Science and Technology, 2019, 13, 514-521.	2.2	6
39	Standardized modulation of the injection site allows for insulin dose reduction without deterioration of metabolic control. Current Medical Research and Opinion, 2014, 30, 2001-2008.	1.9	5
40	Improved Insulin Absorption by Means of Standardized Injection Site Modulation Results in a Safer and More Efficient Prandial Insulin TreatmentA Review of the Existing Clinical Data. Journal of Diabetes Science and Technology, 2015, 9, 116-122.	2.2	5
41	Investigation on the accuracy of the blood glucose monitoring device Prestige IQ. Diabetes, Nutrition & Metabolism, 2003, 16, 257-61.	0.7	5
42	Clinical and Laboratory Evaluation of a New Specific Point-of-Care Test for Intact Proinsulin. Journal of Diabetes Science and Technology, 2017, 11, 278-283.	2.2	4
43	System Accuracy Assessment of a Combined Invasive and Noninvasive Glucometer. Journal of Diabetes Science and Technology, 2020, 14, 575-581.	2.2	4
44	The Diabetes Technology Society Green Declaration. Journal of Diabetes Science and Technology, 2022, 16, 215-217.	2.2	4
45	Laboratory Protocol and Pilot Results for Dynamic Interference Testing of Continuous Glucose Monitoring Sensors. Journal of Diabetes Science and Technology, 2024, 18, 59-65.	2.2	4
46	Advances in Patient Self-Monitoring of Blood Glucose. Journal of Diabetes Science and Technology, 2016, 10, 101-103.	2.2	3
47	Evaluation of System Accuracy of the ClucoMen LX Plus Blood Clucose Monitoring System With Reference to ISO 15197:2013. Journal of Diabetes Science and Technology, 2016, 10, 618-619.	2.2	3
48	System accuracy assessments with a blood glucose meter with combined glucose and ÃY-hydroxybutyrate measurement capabilities. Expert Review of Molecular Diagnostics, 2019, 19, 1043-1048.	3.1	3
49	Re: †Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity'. Public Health, 2021, 199, e1.	2.9	2
50	Fixed-dose combination of pioglitazone and glimepiride in the treatment of Type 2 diabetes mellitus. Expert Review of Endocrinology and Metabolism, 2007, 2, 303-312.	2.4	1
51	Technology-derived storage solutions for stabilizing insulin in extreme weather conditions I: the ViViCap-1 device. Expert Opinion on Drug Delivery, 2017, 14, 709-714.	5.0	1
52	A New Metabolite Panel Test for Identification of Patients With Impaired Glucose Tolerance? Analysis of the Article by Cobb et al. Journal of Diabetes Science and Technology, 2015, 9, 77-79.	2.2	0
53	Longer Usage Time for CSII Catheters. Journal of Diabetes Science and Technology, 2016, 10, 987-988.	2.2	0
54	Diabetes Technology. Endocrine Development, 2016, 31, 57-83.	1.3	0

4

#	Article	IF	CITATIONS
55	Identification of Highly Specific scFvs against Total Adiponectin for Diagnostic Purposes. Biology, 2017, 6, 26.	2.8	0