List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8322446/publications.pdf Version: 2024-02-01

		1980	1820
213	57,814	101	210
papers	citations	h-index	g-index
225	225	225	32921
all docs	docs citations	times ranked	citing authors

YOSHINOR OHSUMI

#	Article	IF	CITATIONS
1	The role of autophagy during the early neonatal starvation period. Nature, 2004, 432, 1032-1036.	13.7	2,630
2	The Role of Atg Proteins in Autophagosome Formation. Annual Review of Cell and Developmental Biology, 2011, 27, 107-132.	4.0	2,587
3	Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. Journal of Cell Biology, 2005, 169, 425-434.	2.3	2,180
4	In Vivo Analysis of Autophagy in Response to Nutrient Starvation Using Transgenic Mice Expressing a Fluorescent Autophagosome Marker. Molecular Biology of the Cell, 2004, 15, 1101-1111.	0.9	2,115
5	Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. Journal of Clinical Investigation, 2003, 112, 1809-1820.	3.9	1,957
6	A ubiquitin-like system mediates protein lipidation. Nature, 2000, 408, 488-492.	13.7	1,790
7	Isolation and characterization of autophagy-defective mutants ofSaccharomyces cerevisiae. FEBS Letters, 1993, 333, 169-174.	1.3	1,523
8	Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nature Reviews Molecular Cell Biology, 2009, 10, 458-467.	16.1	1,498
9	A protein conjugation system essential for autophagy. Nature, 1998, 395, 395-398.	13.7	1,468
10	Dissection of Autophagosome Formation Using Apg5-Deficient Mouse Embryonic Stem Cells. Journal of Cell Biology, 2001, 152, 657-668.	2.3	1,282
11	LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. Journal of Cell Science, 2004, 117, 2805-2812.	1.2	1,256
12	Molecular dissection of autophagy: two ubiquitin-like systems. Nature Reviews Molecular Cell Biology, 2001, 2, 211-216.	16.1	1,190
13	A Unified Nomenclature for Yeast Autophagy-Related Genes. Developmental Cell, 2003, 5, 539-545.	3.1	1,147
14	Tor, a Phosphatidylinositol Kinase Homologue, Controls Autophagy in Yeast. Journal of Biological Chemistry, 1998, 273, 3963-3966.	1.6	1,140
15	Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion. Cell, 2007, 130, 165-178.	13.5	1,056
16	Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase Complex. Journal of Cell Biology, 2000, 150, 1507-1513.	2.3	1,027
17	The Atg12-Atg5 Conjugate Has a Novel E3-like Activity for Protein Lipidation in Autophagy. Journal of Biological Chemistry, 2007, 282, 37298-37302.	1.6	950
18	Two Distinct Vps34 Phosphatidylinositol 3–Kinase Complexes Function in Autophagy and Carboxypeptidase Y Sorting inSaccharomyces cerevisiae. Journal of Cell Biology, 2001, 152, 519-530.	2.3	944

#	Article	IF	CITATIONS
19	The Reversible Modification Regulates the Membrane-Binding State of Apg8/Aut7 Essential for Autophagy and the Cytoplasm to Vacuole Targeting Pathway. Journal of Cell Biology, 2000, 151, 263-276.	2.3	851
20	Historical landmarks of autophagy research. Cell Research, 2014, 24, 9-23.	5.7	837
21	Autophagosome Formation in Mammalian Cells Cell Structure and Function, 2002, 27, 421-429.	0.5	833
22	Formation Process of Autophagosome Is Traced with Apg8/Aut7p in Yeast. Journal of Cell Biology, 1999, 147, 435-446.	2.3	827
23	Mitochondria-Anchored Receptor Atg32 Mediates Degradation of Mitochondria via Selective Autophagy. Developmental Cell, 2009, 17, 87-97.	3.1	778
24	Beclin–phosphatidylinositol 3â€kinase complex functions at the trans â€Golgi network. EMBO Reports, 2001, 2, 330-335.	2.0	775
25	Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. Journal of Cell Science, 2003, 116, 1679-1688.	1.2	660
26	Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes To Cells, 2007, 12, 209-218.	0.5	602
27	Leaf Senescence and Starvation-Induced Chlorosis Are Accelerated by the Disruption of an Arabidopsis Autophagy Gene. Plant Physiology, 2002, 129, 1181-1193.	2.3	548
28	Processing of ATG8s, Ubiquitin-Like Proteins, and Their Deconjugation by ATG4s Are Essential for Plant Autophagy. Plant Cell, 2004, 16, 2967-2983.	3.1	540
29	Atg9 vesicles are an important membrane source during early steps of autophagosome formation. Journal of Cell Biology, 2012, 198, 219-233.	2.3	532
30	Autophagy Negatively Regulates Cell Death by Controlling NPR1-Dependent Salicylic Acid Signaling during Senescence and the Innate Immune Response in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2914-2927.	3.1	531
31	Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature, 2015, 522, 359-362.	13.7	496
32	Atg8â€ f amily interacting motif crucial for selective autophagy. FEBS Letters, 2010, 584, 1379-1385.	1.3	473
33	Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 1997, 192, 245-250.	1.0	456
34	Vacuolar Import of Proteins and Organelles From The Cytoplasm. Annual Review of Cell and Developmental Biology, 1999, 15, 1-32.	4.0	445
35	A New Protein Conjugation System in Human. Journal of Biological Chemistry, 1998, 273, 33889-33892.	1.6	442
36	Tor Directly Controls the Atg1 Kinase Complex To Regulate Autophagy. Molecular and Cellular Biology, 2010, 30, 1049-1058.	1.1	420

#	Article	IF	CITATIONS
37	Formation of the â ⁻¹ ⁄4350-kDa Apg12-Apg5·Apg16 Multimeric Complex, Mediated by Apg16 Oligomerization, Is Essential for Autophagy in Yeast. Journal of Biological Chemistry, 2002, 277, 18619-18625.	1.6	390
38	Apg16p is required for the function of the Apg12p–Apg5p conjugate in the yeast autophagy pathway. EMBO Journal, 1999, 18, 3888-3896.	3.5	385
39	Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nature Communications, 2015, 6, 7527.	5.8	381
40	Molecular machinery of autophagosome formation in yeast,Saccharomyces cerevisiae. FEBS Letters, 2007, 581, 2156-2161.	1.3	373
41	Autophagy Is Required for Maintenance of Amino Acid Levels and Protein Synthesis under Nitrogen Starvation. Journal of Biological Chemistry, 2005, 280, 31582-31586.	1.6	371
42	Apg7p/Cvt2p: A Novel Protein-activating Enzyme Essential for Autophagy. Molecular Biology of the Cell, 1999, 10, 1367-1379.	0.9	363
43	Apg9p/Cvt7p Is an Integral Membrane Protein Required for Transport Vesicle Formation in the Cvt and Autophagy Pathways. Journal of Cell Biology, 2000, 148, 465-480.	2.3	362
44	Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes To Cells, 2008, 13, 1211-1218.	0.5	349
45	The structure of Atg4B–LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO Journal, 2009, 28, 1341-1350.	3.5	329
46	Autophagy in Development and Stress Responses of Plants. Autophagy, 2006, 2, 2-11.	4.3	327
47	Autophagosome Requires Specific Early Sec Proteins for Its Formation and NSF/SNARE for Vacuolar Fusion. Molecular Biology of the Cell, 2001, 12, 3690-3702.	0.9	325
48	Mobilization of Rubisco and Stroma-Localized Fluorescent Proteins of Chloroplasts to the Vacuole by an <i>ATG</i> Gene-Dependent Autophagic Process Â. Plant Physiology, 2008, 148, 142-155.	2.3	325
49	Two Distinct Pathways for Targeting Proteins from the Cytoplasm to the Vacuole/Lysosome. Journal of Cell Biology, 1997, 139, 1687-1695.	2.3	315
50	Autophagy Plays a Role in Chloroplast Degradation during Senescence in Individually Darkened Leaves Â Â. Plant Physiology, 2009, 149, 885-893.	2.3	313
51	Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nature Structural and Molecular Biology, 2019, 26, 281-288.	3.6	312
52	Atg17 Functions in Cooperation with Atg1 and Atg13 in Yeast Autophagy. Molecular Biology of the Cell, 2005, 16, 2544-2553.	0.9	297
53	The Atg18-Atg2 Complex Is Recruited to Autophagic Membranes via Phosphatidylinositol 3-Phosphate and Exerts an Essential Function. Journal of Biological Chemistry, 2008, 283, 23972-23980.	1.6	282
54	Two ubiquitin-like conjugation systems essential for autophagy. Seminars in Cell and Developmental Biology, 2004, 15, 231-236.	2.3	276

#	Article	IF	CITATIONS
55	Fine mapping of autophagy-related proteins during autophagosome formation in <i>Saccharomyces cerevisiae</i> . Journal of Cell Science, 2013, 126, 2534-44.	1.2	263
56	Phase separation organizes the site of autophagosome formation. Nature, 2020, 578, 301-305.	13.7	263
57	Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nature Structural and Molecular Biology, 2020, 27, 1185-1193.	3.6	253
58	Cvt9/Gsa9 Functions in Sequestering Selective Cytosolic Cargo Destined for the Vacuole. Journal of Cell Biology, 2001, 153, 381-396.	2.3	244
59	Apg14p and Apg6/Vps30p Form a Protein Complex Essential for Autophagy in the Yeast, Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 22284-22291.	1.6	243
60	Organization of the Pre-autophagosomal Structure Responsible for Autophagosome Formation. Molecular Biology of the Cell, 2008, 19, 2039-2050.	0.9	233
61	The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10363-10368.	3.3	214
62	Apg13p and Vac8p Are Part of a Complex of Phosphoproteins That Are Required for Cytoplasm to Vacuole Targeting. Journal of Biological Chemistry, 2000, 275, 25840-25849.	1.6	205
63	PI3K signaling of autophagy is required for starvation tolerance and virulenceof Cryptococcus neoformans. Journal of Clinical Investigation, 2008, 118, 1186-1197.	3.9	204
64	Structure of Atg5·Atg16, a Complex Essential for Autophagy. Journal of Biological Chemistry, 2007, 282, 6763-6772.	1.6	203
65	Assortment of Phosphatidylinositol 3-Kinase Complexes—Atg14p Directs Association of Complex I to the Pre-autophagosomal Structure in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2006, 17, 1527-1539.	0.9	202
66	Tor2 Directly Phosphorylates the AGC Kinase Ypk2 To Regulate Actin Polarization. Molecular and Cellular Biology, 2005, 25, 7239-7248.	1.1	198
67	Highly Oxidized Peroxisomes Are Selectively Degraded via Autophagy in <i>Arabidopsis</i> . Plant Cell, 2013, 25, 4967-4983.	3.1	195
68	Yeast autophagosomes: de novo formation of a membrane structure. Trends in Cell Biology, 2002, 12, 231-235.	3.6	190
69	Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy, 2012, 8, 177-186.	4.3	185
70	The Mouse SKD1, a Homologue of Yeast Vps4p, Is Required for Normal Endosomal Trafficking and Morphology in Mammalian Cells. Molecular Biology of the Cell, 2000, 11, 747-763.	0.9	181
71	In Vivo and in Vitro Reconstitution of Atg8 Conjugation Essential for Autophagy. Journal of Biological Chemistry, 2004, 279, 40584-40592.	1.6	180
72	Structural basis of starvation-induced assembly of the autophagy initiation complex. Nature Structural and Molecular Biology, 2014, 21, 513-521.	3.6	180

#	Article	IF	CITATIONS
73	AtATG Genes, Homologs of Yeast Autophagy Genes, are Involved in Constitutive Autophagy in Arabidopsis Root Tip Cells. Plant and Cell Physiology, 2006, 47, 1641-1652.	1.5	175
74	Starvation Triggers the Delivery of the Endoplasmic Reticulum to the Vacuole via Autophagy in Yeast. Traffic, 2005, 6, 56-65.	1.3	168
75	Aminopeptidase I Is Targeted to the Vacuole by a Nonclassical Vesicular Mechanism. Journal of Cell Biology, 1997, 138, 37-44.	2.3	164
76	The Intrinsically Disordered Protein Atg13 Mediates Supramolecular Assembly of Autophagy Initiation Complexes. Developmental Cell, 2016, 38, 86-99.	3.1	161
77	The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes To Cells, 2004, 9, 611-618.	0.5	158
78	Vam2/Vps41p and Vam6/Vps39p Are Components of a Protein Complex on the Vacuolar Membranes and Involved in the Vacuolar Assembly in the Yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 1997, 272, 11344-11349.	1.6	156
79	Structural Basis of Atg8 Activation by a Homodimeric E1, Atg7. Molecular Cell, 2011, 44, 462-475.	4.5	156
80	Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene, 1997, 192, 207-213.	1.0	154
81	Current knowledge of the preâ€autophagosomal structure (PAS). FEBS Letters, 2010, 584, 1280-1286.	1.3	152
82	An Arabidopsis Homolog of Yeast ATG6/VPS30 Is Essential for Pollen Germination. Plant Physiology, 2007, 143, 1132-1139.	2.3	149
83	Analysis of the Membrane Structures Involved in Autophagy in Yeast by Freeze-Replica Method Cell Structure and Function, 1995, 20, 465-471.	0.5	145
84	Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3350-3355.	3.3	141
85	A Protein Conjugation System in Yeast with Homology to Biosynthetic Enzyme Reaction of Prokaryotes. Journal of Biological Chemistry, 2000, 275, 7462-7465.	1.6	139
86	Atg17 recruits Atg9 to organize the preâ€autophagosomal structure. Genes To Cells, 2009, 14, 525-538.	0.5	137
87	Starvation Induced Cell Death in Autophagy-Defective Yeast Mutants Is Caused by Mitochondria Dysfunction. PLoS ONE, 2011, 6, e17412.	1.1	137
88	SKD1 AAA ATPase-Dependent Endosomal Transport is Involved in Autolysosome Formation Cell Structure and Function, 2002, 27, 29-37.	0.5	131
89	Structure of the Atg12–Atg5 conjugate reveals a platform for stimulating Atg8–PE conjugation. EMBO Reports, 2013, 14, 206-211.	2.0	131
90	Atg12–Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nature Structural and Molecular Biology, 2013, 20, 433-439.	3.6	131

#	Article	IF	CITATIONS
91	Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae. Genes To Cells, 2008, 13, 537-547.	0.5	128
92	Structural Basis for the Specificity and Catalysis of Human Atg4B Responsible for Mammalian Autophagy. Journal of Biological Chemistry, 2005, 280, 40058-40065.	1.6	121
93	The Crystal Structure of Atg3, an Autophagy-related Ubiquitin Carrier Protein (E2) Enzyme that Mediates Atg8 Lipidation. Journal of Biological Chemistry, 2007, 282, 8036-8043.	1.6	121
94	Autophagy-related Protein 32 Acts as Autophagic Degron and Directly Initiates Mitophagy. Journal of Biological Chemistry, 2012, 287, 10631-10638.	1.6	120
95	Liquidity Is a Critical Determinant for Selective Autophagy of Protein Condensates. Molecular Cell, 2020, 77, 1163-1175.e9.	4.5	118
96	Apg2p Functions in Autophagosome Formation on the Perivacuolar Structure. Journal of Biological Chemistry, 2001, 276, 30452-30460.	1.6	115
97	Geranylgeranylated Snares Are Dominant Inhibitors of Membrane Fusion. Journal of Cell Biology, 2000, 151, 453-466.	2.3	114
98	Dimeric Coiled-coil Structure of Saccharomyces cerevisiae Atg16 and Its Functional Significance in Autophagy. Journal of Biological Chemistry, 2010, 285, 1508-1515.	1.6	114
99	Bulk <scp>RNA</scp> degradation by nitrogen starvationâ€induced autophagy in yeast. EMBO Journal, 2015, 34, 154-168.	3.5	114
100	Modification of a Ubiquitin-like Protein Paz2 Conducted Micropexophagy through Formation of a Novel Membrane Structure. Molecular Biology of the Cell, 2004, 15, 58-70.	0.9	112
101	Structure-based Analyses Reveal Distinct Binding Sites for Atg2 and Phosphoinositides in Atg18. Journal of Biological Chemistry, 2012, 287, 31681-31690.	1.6	112
102	The AtVAM3 Encodes a Syntaxin-related Molecule Implicated in the Vacuolar Assembly in Arabidopsis thaliana. Journal of Biological Chemistry, 1997, 272, 24530-24535.	1.6	109
103	Role of the Apg12 conjugation system in mammalian autophagy. International Journal of Biochemistry and Cell Biology, 2003, 35, 553-561.	1.2	107
104	Autophagy-related Protein 8 (Atg8) Family Interacting Motif in Atg3 Mediates the Atg3-Atg8 Interaction and Is Crucial for the Cytoplasm-to-Vacuole Targeting Pathway. Journal of Biological Chemistry, 2010, 285, 29599-29607.	1.6	105
105	Quality control of plant peroxisomes in organ specific manner via autophagy. Journal of Cell Science, 2014, 127, 1161-8.	1.2	105
106	Structural and functional analyses of APG5 a gene involved in autophagy in yeast. Gene, 1996, 178, 139-143.	1.0	104
107	The Crystal Structure of Plant ATG12 and its Biological Implication in Autophagy. Autophagy, 2005, 1, 119-126.	4.3	104
108	In Vitro Reconstitution of Plant Atg8 and Atg12 Conjugation Systems Essential for Autophagy. Journal of Biological Chemistry, 2008, 283, 1921-1928.	1.6	103

#	Article	IF	CITATIONS
109	Selective Transport of α-Mannosidase by Autophagic Pathways. Journal of Biological Chemistry, 2010, 285, 30019-30025.	1.6	103
110	Organelle degradation during the lens and erythroid differentiation is independent of autophagy. Biochemical and Biophysical Research Communications, 2006, 339, 485-489.	1.0	102
111	Atg9 Vesicles Recruit Vesicle-tethering Proteins Trs85 and Ypt1 to the Autophagosome Formation Site. Journal of Biological Chemistry, 2012, 287, 44261-44269.	1.6	102
112	Characterization of the Atg17–Atg29–Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2009, 389, 612-615.	1.0	101
113	Hrr25 triggers selective autophagy–related pathways by phosphorylating receptor proteins. Journal of Cell Biology, 2014, 207, 91-105.	2.3	101
114	The Autophagy-related Protein Kinase Atg1 Interacts with the Ubiquitin-like Protein Atg8 via the Atg8 Family Interacting Motif to Facilitate Autophagosome Formation. Journal of Biological Chemistry, 2012, 287, 28503-28507.	1.6	99
115	OsATG10b, an Autophagosome Component, Is Needed for Cell Survival against Oxidative Stresses in Rice. Molecules and Cells, 2009, 27, 67-74.	1.0	98
116	Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. Journal of Cell Biology, 2013, 203, 299-313.	2.3	97
117	Studies of Cargo Delivery to the Vacuole Mediated by Autophagosomes in Saccharomyces cerevisiae. Developmental Cell, 2002, 3, 815-824.	3.1	96
118	The Early Secretory Pathway Contributes to Autophagy in Yeast Cell Structure and Function, 2003, 28, 49-54.	0.5	96
119	Ald6p Is a Preferred Target for Autophagy in Yeast, Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 16071-16076.	1.6	95
120	Nucleotide sequence of the CLS4 (CDC24) gene of Saccharomyces cerevisiae. Gene, 1987, 54, 125-132.	1.0	93
121	Characterization of a novel autophagy-specific gene, ATG29. Biochemical and Biophysical Research Communications, 2005, 338, 1884-1889.	1.0	92
122	Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2007, 356, 405-410.	1.0	91
123	Yeast and mammalian autophagosomes exhibit distinct phosphatidylinositol 3-phosphate asymmetries. Nature Communications, 2014, 5, 3207.	5.8	91
124	Apg5p Functions in the Sequestration Step in the Cytoplasm-to-Vacuole Targeting and Macroautophagy Pathways. Molecular Biology of the Cell, 2000, 11, 969-982.	0.9	87
125	The C-terminal Region of an Apg7p/Cvt2p Is Required for Homodimerization and Is Essential for Its E1 Activity and E1-E2 Complex Formation. Journal of Biological Chemistry, 2001, 276, 9846-9854.	1.6	84
126	Unveiling the molecular mechanisms of plant autophagy – from autophagosomes to vacuoles in plants. Plant and Cell Physiology, 2018, 59, 1337-1344.	1.5	83

#	Article	IF	CITATIONS
127	A Family of Basic Amino Acid Transporters of the Vacuolar Membrane from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 4851-4857.	1.6	81
128	Genetic study of the role of calcium ions in the cell division cycle of Saccharomyces cerevisiae: A calcium-dependent mutant and its trifluoperazine-dependent pseudorevertants. Molecular Genetics and Genomics, 1984, 193, 389-394.	2.4	79
129	Structure-Function Relationship of Atg12, a Ubiquitin-Like Modifier Essential for Autophagy. Autophagy, 2005, 1, 110-118.	4.3	69
130	A Sorting Nexin PpAtg24 Regulates Vacuolar Membrane Dynamics during Pexophagy via Binding to Phosphatidylinositol-3-Phosphate. Molecular Biology of the Cell, 2005, 16, 446-457.	0.9	69
131	Atg14: A Key Player in Orchestrating Autophagy. International Journal of Cell Biology, 2011, 2011, 1-7.	1.0	67
132	ATG Systems from the Protein Structural Point of View. Chemical Reviews, 2009, 109, 1587-1598.	23.0	66
133	Mutational Analysis of Csc1/Vps4p: Involvement of Endosome in Regulation of Autophagy in Yeast Cell Structure and Function, 1997, 22, 501-509.	0.5	62
134	Structure of the Novel C-terminal Domain of Vacuolar Protein Sorting 30/Autophagy-related Protein 6 and Its Specific Role in Autophagy. Journal of Biological Chemistry, 2012, 287, 16256-16266.	1.6	61
135	Structural Insights into Atg10-Mediated Formation of the Autophagy-Essential Atg12-Atg5 Conjugate. Structure, 2012, 20, 1244-1254.	1.6	61
136	Dynamics and function of PtdIns(3)Pin autophagy. Autophagy, 2008, 4, 952-954.	4.3	60
137	The Yeast Tor Signaling Pathway Is Involved in G2/M Transition via Polo-Kinase. PLoS ONE, 2008, 3, e2223.	1.1	60
138	Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nature Structural and Molecular Biology, 2012, 19, 1250-1256.	3.6	59
139	Membrane Morphology Is Actively Transformed by Covalent Binding of the Protein Atg8 to PE-Lipids. PLoS ONE, 2014, 9, e115357.	1.1	58
140	Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression. Journal of Biological Chemistry, 2017, 292, 19905-19918.	1.6	57
141	Zinc starvation induces autophagy in yeast. Journal of Biological Chemistry, 2017, 292, 8520-8530.	1.6	55
142	The First Molecular Evidence That Autophagy Relates Rimmed Vacuole Formation in Chloroquine Myopathy. Journal of Biochemistry, 2002, 131, 647-651.	0.9	53
143	The aminoâ€ŧerminal region of Atg3 is essential for association with phosphatidylethanolamine in Atg8 lipidation. FEBS Letters, 2009, 583, 1078-1083.	1.3	53
144	Physiological pH and Acidic Phospholipids Contribute to Substrate Specificity in Lipidation of Atg8. Journal of Biological Chemistry, 2008, 283, 21847-21852.	1.6	51

#	Article	IF	CITATIONS
145	Membrane perturbation by lipidated Atg8 underlies autophagosome biogenesis. Nature Structural and Molecular Biology, 2021, 28, 583-593.	3.6	51
146	Two distinct mechanisms target the autophagy-related E3 complex to the pre-autophagosomal structure. ELife, 2019, 8, .	2.8	51
147	PtdIns 3-Kinase Orchestrates Autophagosome Formation in Yeast. Journal of Lipids, 2011, 2011, 1-9.	1.9	50
148	Two newly identified sites in the ubiquitinâ€like protein Atg8 are essential for autophagy. EMBO Reports, 2006, 7, 635-642.	2.0	49
149	A landmark protein essential for mitophagy. Autophagy, 2009, 5, 1203-1205.	4.3	49
150	The NMR structure of the autophagy-related protein Atg8. Journal of Biomolecular NMR, 2010, 47, 237-241.	1.6	49
151	Selective Transport of α-Mannosidase by Autophagic Pathways. Journal of Biological Chemistry, 2010, 285, 30026-30033.	1.6	49
152	Novel families of vacuolar amino acid transporters. IUBMB Life, 2008, 60, 519-525.	1.5	46
153	TORC1 inactivation stimulates autophagy of nucleoporin and nuclear pore complexes. Journal of Cell Biology, 2020, 219, .	2.3	46
154	Dimeric structure of H+-translocating pyrophosphatase from pumpkin vacuolar membranes. FEBS Letters, 1991, 290, 177-180.	1.3	44
155	Mouse Apg10 as an Apg12-conjugating enzyme: analysis by the conjugation-mediated yeast two-hybrid method. FEBS Letters, 2002, 532, 450-454.	1.3	44
156	Selective Autophagy Regulates Insertional Mutagenesis by the Ty1 Retrotransposon in Saccharomyces cerevisiae. Developmental Cell, 2011, 21, 358-365.	3.1	43
157	Autophagy Increases Zinc Bioavailability to Avoid Light-Mediated Reactive Oxygen Species Production under Zinc Deficiency. Plant Physiology, 2020, 182, 1284-1296.	2.3	41
158	Transcriptomic and Proteomic Analysis of a 14-3-3 Gene-Deficient Yeast. Biochemistry, 2004, 43, 6149-6158.	1.2	40
159	Phospholipid methylation controls Atg32â€mediated mitophagy and Atg8 recycling. EMBO Journal, 2015, 34, 2703-2719.	3.5	39
160	A novel role for 12/15-lipoxygenase in regulating autophagy. Redox Biology, 2015, 4, 40-47.	3.9	39
161	Lap3 is a selective target of autophagy in yeast, Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2009, 378, 551-557.	1.0	37
162	Interrelationships among Atg proteins during autophagy inSaccharomyces cerevisiae. Yeast, 2004, 21, 1057-1065.	0.8	36

#	Article	IF	CITATIONS
163	Chloride transport of yeast vacuolar membrane vesicles: a study of in vitro vacuolar acidification. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1101, 296-302.	0.5	35
164	Localization of Atg3 to autophagyâ€related membranes and its enhancement by the Atg8â€family interacting motif to promote expansion of the membranes. FEBS Letters, 2015, 589, 744-749.	1.3	35
165	Selectivity of mRNA degradation by autophagy in yeast. Nature Communications, 2021, 12, 2316.	5.8	35
166	Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with a vacuole membrane protein. ELife, 2018, 7, .	2.8	34
167	Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of αâ€mannosidase under nitrogen starvation conditions. FEBS Letters, 2014, 588, 3862-3869.	1.3	33
168	Analysis of autophagy activated during changes in carbon source availability in yeast cells. Journal of Biological Chemistry, 2019, 294, 5590-5603.	1.6	31
169	Patch Clamp Studies on V-type ATPase of Vacuolar Membrane of Haploid Saccharomyces cerevisiae. Journal of Biological Chemistry, 1999, 274, 34903-34910.	1.6	30
170	Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PASâ€ŧargeted Atg2. FEBS Letters, 2012, 586, 2473-2478.	1.3	29
171	Atg7 Activates an Autophagy-Essential Ubiquitin-like Protein Atg8 through Multi-Step Recognition. Journal of Molecular Biology, 2018, 430, 249-257.	2.0	28
172	Archaebacterial ATPases: Relationship to Other Ion-Translocating ATPase Families Examined in Terms of Immunological Cross-Reactivity1. Journal of Biochemistry, 1990, 108, 554-559.	0.9	26
173	Structural Basis for Receptor-Mediated Selective Autophagy of Aminopeptidase I Aggregates. Cell Reports, 2016, 16, 19-27.	2.9	26
174	Functional identification of <i>At<scp>AVT</scp>3</i> , a family of vacuolar amino acid transporters, in <i>Arabidopsis</i> . FEBS Letters, 2017, 591, 5-15.	1.3	26
175	Recycling of iron via autophagy is critical for the transition from glycolytic to respiratory growth. Journal of Biological Chemistry, 2017, 292, 8533-8543.	1.6	25
176	Functional molecular masses of vacuolar membrane H+ -ATPase from Saccharomyces cerevisiae as studied by radiation inactivation analysis. FEBS Letters, 1989, 244, 397-401.	1.3	24
177	Protein turnover. IUBMB Life, 2006, 58, 363-369.	1.5	23
178	Autophagy facilitates adaptation of budding yeast to respiratory growth by recycling serine for one-carbon metabolism. Nature Communications, 2020, 11, 5052.	5.8	21
179	SDS-PAGE Techniques to Study Ubiquitin-Like Conjugation Systems in Yeast Autophagy. Methods in Molecular Biology, 2012, 832, 519-529.	0.4	19
180	Two-Colored Fluorescence Correlation Spectroscopy Screening for LC3-P62 Interaction Inhibitors. Journal of Biomolecular Screening, 2013, 18, 1103-1109.	2.6	16

#	Article	IF	CITATIONS
181	The Thermotolerant Yeast Kluyveromyces marxianus Is a Useful Organism for Structural and Biochemical Studies of Autophagy. Journal of Biological Chemistry, 2015, 290, 29506-29518.	1.6	16
182	Mutational analysis of Vam4/Ypt7p function in the vacuolar biogenesis and morphogenesis in the yeast,Saccharomyces cerevisiae. Protoplasma, 1996, 191, 126-135.	1.0	15
183	Lipidation of Atg8: How is substrate specificity determined without a canonical E3 enzyme?. Autophagy, 2008, 4, 911-913.	4.3	15
184	Proteomic Profiling of Autophagosome Cargo in Saccharomyces cerevisiae. PLoS ONE, 2014, 9, e91651.	1.1	15
185	Saccharomyces cerevisiae mata mutant cells defective in pointed projection formation in response to α-factor at high concentrations. Yeast, 1994, 10, 579-594.	0.8	14
186	Plant autophagy is responsible for peroxisomal transition and plays an important role in the maintenance of peroxisomal quality. Autophagy, 2014, 10, 936-937.	4.3	14
187	The yeast chromatin remodeler Rsc1-RSC complex is required for transcriptional activation of autophagy-related genes and inhibition of the TORC1 pathway in response to nitrogen starvation. Biochemical and Biophysical Research Communications, 2015, 464, 1248-1253.	1.0	14
188	Expression, purification and crystallization of the Atg5–Atg16 complex essential for autophagy. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 1021-1023.	0.7	13
189	Inhibitory Effect of Diphtheria Toxin on Amino Acid Incorporation in Escherichia coli Cell-Free System. Journal of Bacteriology, 1970, 104, 152-157.	1.0	13
190	Crystallization and preliminary X-ray analysis of LC3-I. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1464-1465.	2.5	10
191	Mitotic phosphorylation of the ULK complex regulates cell cycle progression. PLoS Biology, 2020, 18, e3000718.	2.6	10
192	Serial section reconstruction using a computer graphics system: Applications to intracellular structures in yeast cells and to the periodontal structure of dogs' teeth. Journal of Electron Microscopy Technique, 1989, 11, 16-26.	1.1	9
193	Starved cells eat ribosomes. Nature Cell Biology, 2008, 10, 505-507.	4.6	9
194	Crystallization of the Atg12–Atg5 conjugate bound to Atg16 by the free-interface diffusion method. Journal of Synchrotron Radiation, 2008, 15, 266-268.	1.0	8
195	Bur1 functions with TORC1 for vacuoleâ€mediated cell cycle progression. EMBO Reports, 2022, 23, e53477.	2.0	8
196	Autophagy: Close Contact Keeps Out the Uninvited. Current Biology, 2014, 24, R560-R562.	1.8	7
197	Crystallization and preliminary crystallographic analysis of human Atg4B–LC3 complex. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 99-102.	0.7	6
198	Crystallization ofSaccharomyces cerevisiaeaminopeptidase 1, the major cargo protein of the Cvt pathway. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 200-203.	0.7	6

#	Article	IF	CITATIONS
199	Crystallization and preliminary X-ray analysis of Atg10. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 443-445.	0.7	6
200	Crystallization of <i>Saccharomyces cerevisiae</i> α-mannosidase, a cargo protein of the Cvt pathway. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 571-573.	0.7	6
201	apg15-1, a UGA Mutant Allele in theSaccharomyces cerevisiae APG16Gene, and Its Suppression by a Cytoplasmic Factor. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1541-1548.	0.6	4
202	Crystallization and preliminary X-ray analysis of Atg3. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 1016-1017.	0.7	4
203	Crystallization of the coiled-coil domain of Atg16 essential for autophagy. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1046-1048.	0.7	4
204	Different phosphatidylinositol 3-phosphate asymmetries in yeast and mammalian autophagosomes revealed by a new electron microscopy technique. Autophagy, 2014, 10, 933-935.	4.3	4
205	Inactivation of Ribosomes by a Factor Induced by Colicin E3. Journal of Biochemistry, 1972, 71, 911-914.	0.9	3
206	The Molecular Mechanisms Underlying Autophagosome Formation in Yeast. , 2014, , 67-77.		2
207	The TOR-Mediated Regulation of Autophagy in the Yeast Saccharomyces cerevisiae. The Enzymes, 2010, , 143-165.	0.7	1
208	Molecular Dissection of Autophagy in the YeastSaccharomyces cerevisiae. , 0, , 31-50.		1
209	Crystallographic Studies on Autophagy-Related Proteins. , 0, , .		1
210	Visualization of Rubisco-Containing Bodies Derived from Chloroplasts in Living Cells of Arabidopsis. , 2008, , 1207-1210.		0
211	ATG4 Proteases in Autophagy. , 2013, , 2138-2142.		0
212	Moluclar Biological Approach to the Autophagy in Yeast Seibutsu Butsuri, 1999, 39, 34-39.	0.0	0
213	Structure basis for E2-E3 interaction in the plant Atg conjugation system. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1660-C1660.	0.0	Ο