
Pu Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8321647/publications.pdf Version: 2024-02-01

Ριι Ζηου

#	Article	IF	CITATIONS
1	Coherent Beam Combining of Fiber Amplifiers Using Stochastic Parallel Gradient Descent Algorithm and Its Application. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 248-256.	2.9	188
2	Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers. Optics Express, 2011, 19, 18645.	3.4	117
3	189 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality. Optics Express, 2016, 24, 4187.	3.4	114
4	High-power coherent beam polarization combination of fiber lasers: progress and prospect [Invited]. Journal of the Optical Society of America B: Optical Physics, 2017, 34, A7.	2.1	106
5	Learning to decompose the modes in few-mode fibers with deep convolutional neural network. Optics Express, 2019, 27, 10127.	3.4	104
6	High-power fiber lasers based on tandem pumping. Journal of the Optical Society of America B: Optical Physics, 2017, 34, A29.	2.1	95
7	First experimental demonstration of coherent beam combining of more than 100 beams. Photonics Research, 2020, 8, 1943.	7.0	93
8	Comprehensive Theoretical Study of Mode Instability in High-Power Fiber Lasers by Employing a Universal Model and Its Implications. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-19.	2.9	86
9	Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm. Optics Letters, 2009, 34, 2939.	3.3	79
10	414  W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Optics Letters, 2017, 42, 1.	3.3	79
11	Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength. Journal of Optics (United Kingdom), 2015, 17, 045504.	2.2	78
12	Average spreading of a Gaussian beam array in non-Kolmogorov turbulence. Optics Letters, 2010, 35, 1043.	3.3	67
13	Development status of high power fiber lasers and their coherent beam combination. Science China Information Sciences, 2019, 62, 1.	4.3	65
14	Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects. Optics Express, 2017, 25, 5609.	3.4	64
15	Coherent beam combination of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm. Applied Physics Letters, 2009, 94, 231106.	3.3	59
16	High-order mode Yb-doped fiber lasers based on mode-selective couplers. Optics Express, 2018, 26, 19171.	3.4	59
17	Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 25 kW employing bidirectional-pump scheme. Optics Express, 2016, 24, 27828.	3.4	58
18	Coherent beam combining of high power fiber lasers: Progress and prospect. Science China Technological Sciences, 2013, 56, 1597-1606.	4.0	56

#	Article	IF	CITATIONS
19	7.1ÂkW coherent beam combining system based on a seven-channel fiber amplifier array. Optics and Laser Technology, 2021, 140, 107016.	4.6	50
20	1.5-kW Yb-Raman Combined Nonlinear Fiber Amplifier at 1120 nm. IEEE Photonics Technology Letters, 2015, 27, 628-630.	2.5	49
21	Single-frequency 332  W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality. Applied Optics, 2013, 52, 4854.	1.8	48
22	Deep-learning-assisted, two-stage phase control method for high-power mode-programmable orbital angular momentum beam generation. Photonics Research, 2020, 8, 715.	7.0	47
23	Highâ€power random distributed feedback fiber laser: From science to application. Annalen Der Physik, 2016, 528, 649-662.	2.4	45
24	Fiber laser development enabled by machine learning: review and prospect. PhotoniX, 2022, 3, .	13.5	45
25	Numerical analysis of the effects of aberrations on coherently combined fiber laser beams. Applied Optics, 2008, 47, 3350.	2.1	43
26	3.05 kW monolithic fiber laser oscillator with simultaneous optimizations of stimulated Raman scattering and transverse mode instability. Journal of Optics (United Kingdom), 2018, 20, 025802.	2.2	42
27	Deep-learning-based phase control method for tiled aperture coherent beam combining systems. High Power Laser Science and Engineering, 2019, 7, .	4.6	42
28	Average intensity of a partially coherent rectangular flat-topped laser array propagating in a turbulent atmosphere. Applied Optics, 2009, 48, 5251.	2.1	39
29	Dynamic characteristics of stimulated Raman scattering in high power fiber amplifiers in the presence of mode instabilities. Optics Express, 2018, 26, 25098.	3.4	39
30	Comprehensive investigation on producing high-power orbital angular momentum beams by coherent combining technology. High Power Laser Science and Engineering, 2019, 7, .	4.6	39
31	101 kW superfluorescent source in all-fiberized MOPA configuration. Optics Express, 2015, 23, 5485.	3.4	38
32	High-power vortex beam generation enabled by a phased beam array fed at the nonfocal-plane. Optics Express, 2019, 27, 4046.	3.4	38
33	Experimental Investigation on 1018-nm High-Power Ytterbium-Doped Fiber Amplifier. IEEE Photonics Technology Letters, 2012, 24, 1088-1090.	2.5	35
34	Mutual Injection-Locking and Coherent Combining of Two Individual Fiber Lasers. IEEE Journal of Quantum Electronics, 2008, 44, 515-519.	1.9	34
35	Tunable random Raman fiber laser at 17 Âμm region with high spectral purity. Optics Express, 2019, 27, 28800.	3.4	34
36	Adaptive mode control of a few-mode fiber by real-time mode decomposition. Optics Express, 2015, 23, 28082.	3.4	33

#	Article	IF	CITATIONS
37	Experimental Study of Output Characteristics of Bi-Directional Pumping High Power Fiber Amplifier in Different Pumping Schemes. IEEE Photonics Journal, 2017, 9, 1-10.	2.0	33
38	Deep Learning-Based Real-Time Mode Decomposition for Multimode Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-6.	2.9	31
39	350-W Coherent Beam Combining of Fiber Amplifiers With Tilt-Tip and Phase-Locking Control. IEEE Photonics Technology Letters, 2012, 24, 1781-1784.	2.5	28
40	High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier. Optics Express, 2015, 23, 3382.	3.4	28
41	Pump scheme optimization of an incoherently pumped high-power random fiber laser. Photonics Research, 2019, 7, 977.	7.0	28
42	Study of Wavelength Dependence of Mode Instability Based on a Semi-Analytical Model. IEEE Journal of Quantum Electronics, 2015, 51, 1-6.	1.9	27
43	Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality. Science China Technological Sciences, 2019, 62, 80-86.	4.0	27
44	Spectrum-Manipulable Hundred-Watt-Level High-Power Superfluorescent Fiber Source. Journal of Lightwave Technology, 2019, 37, 3113-3118.	4.6	27
45	High power tunable multiwavelength random fiber laser at 1.3 μm waveband. Optics Express, 2021, 29, 5516.	3.4	27
46	Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality. High Power Laser Science and Engineering, 2022, 10, .	4.6	27
47	High-Energy Square Pulses in a Mode-Locked Yb-Doped Fiber Laser Operating in DSR Region. IEEE Photonics Technology Letters, 2015, 27, 737-740.	2.5	26
48	310-W Single Frequency Tm-Doped All-Fiber MOPA. IEEE Photonics Technology Letters, 2015, 27, 677-680.	2.5	26
49	119-W Monolithic Single-Mode 1173-nm Raman Fiber Laser. IEEE Photonics Journal, 2013, 5, 1501706-1501706.	2.0	25
50	Ultra-stable high-power mid-infrared optical parametric oscillator pumped by a super-fluorescent fiber source. Optics Express, 2016, 24, 21684.	3.4	24
51	Powerful linearly-polarized high-order random fiber laser pumped by broadband amplified spontaneous emission source. Scientific Reports, 2016, 6, 35213.	3.3	24
52	Spatially-distributed orbital angular momentum beam array generation based on greedy algorithms and coherent combining technology. Optics Express, 2018, 26, 14945.	3.4	24
53	Modal Analysis of Fiber Laser Beam by Using Stochastic Parallel Gradient Descent Algorithm. IEEE Photonics Technology Letters, 2015, 27, 2280-2283.	2.5	23
54	High-Power Narrow-Band and Polarization-Maintained All Fiber Superfluorescent Source. IEEE Photonics Technology Letters, 2015, 27, 879-882.	2.5	23

#	Article	IF	CITATIONS
55	Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW. Journal of Optics (United Kingdom), 2016, 18, 105803.	2.2	23
56	Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers. Journal of Optics (United Kingdom), 2016, 18, 065501.	2.2	22
57	Theoretical Analysis of Heat Distribution in Raman Fiber Lasers and Amplifiers Employing Pure Passive Fiber. IEEE Photonics Journal, 2020, 12, 1-13.	2.0	22
58	Cladding-pumped Raman fiber laser with 0.78% quantum defect enabled by phosphorus-doped fiber. High Power Laser Science and Engineering, 2022, 10, .	4.6	22
59	High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser. Scientific Reports, 2016, 6, 30052.	3.3	21
60	Broadband pumping enabled flat-amplitude multi-wavelength random Raman fiber laser. Optics Letters, 2020, 45, 1786.	3.3	21
61	kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme. High Power Laser Science and Engineering, 2017, 5, .	4.6	20
62	Ultralow-quantum-defect Raman laser based on the boson peak in phosphosilicate fiber. Photonics Research, 2020, 8, 1155.	7.0	20
63	Multiwavelength Brillouin-Thulium Fiber Laser. IEEE Photonics Journal, 2014, 6, 1-7.	2.0	19
64	High power linearly polarized fiber laser: Generation, manipulation and application. Science China Technological Sciences, 2017, 60, 1784-1800.	4.0	19
65	Analysis of multi-wavelength active coherent polarization beam combining system. Optics Express, 2014, 22, 16538.	3.4	18
66	Average spreading and beam quality evolution of Gaussian array beams propagating through oceanic turbulence. Laser Physics Letters, 2015, 12, 116001.	1.4	18
67	Intrinsic Mechanism for Spectral Evolution in Single-Frequency Raman Fiber Amplifier. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-8.	2.9	18
68	Experimental Study of 5-kW High-Stability Monolithic Fiber Laser Oscillator With or Without External Feedback. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	18
69	Coherent beam combination of a hexagonal distributed high power fiber amplifier array. Applied Optics, 2009, 48, 6537.	2.1	17
70	Random Distributed Feedback Raman Fiber Laser With Short Cavity and Its Temporal Properties. IEEE Photonics Technology Letters, 2014, 26, 1605-1608.	2.5	17
71	Power scaling on tellurite glass Raman fibre lasers for mid-infrared applications. High Power Laser Science and Engineering, 2018, 6, .	4.6	17
72	In-band pumping avenue based high power superfluorescent fiber source with record power andÂnear-diffraction-limited beam quality. High Power Laser Science and Engineering, 2018, 6, .	4.6	17

#	Article	IF	CITATIONS
73	Greater than 2ÂkW all-passive fiber Raman amplifier with good beam quality. High Power Laser Science and Engineering, 2020, 8, .	4.6	17
74	From spectral broadening to recompression: dynamics of incoherent optical waves propagating in the fiber. PhotoniX, 2021, 2, .	13.5	17
75	Over 80 nJ Sub-100 fs All-Fiber Mamyshev Oscillator. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-5.	2.9	17
76	2 kW high-efficiency Raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation. Optics Express, 2020, 28, 3495.	3.4	17
77	Power scaling of Raman fiber amplifier based on the optimization of temporal and spectral characteristics. Optics Express, 2020, 28, 12395.	3.4	17
78	Linearly-Polarized Fiber-Integrated Nonlinear CPA System for High-Average-Power Femtosecond Pulses Generation at 1.06 <inline-formula> <tex-math notation="LaTeX">\$mu{ext{m}}\$ </tex-math </inline-formula> . Journal of Lightwave Technology, 2016, 34, 4271-4277.	4.6	16
79	Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system. Scientific Reports, 2017, 7, 2199.	3.3	16
80	3 kW Passive-Gain-Enabled Metalized Raman Fiber Amplifier With Brightness Enhancement. Journal of Lightwave Technology, 2021, 39, 1785-1790.	4.6	16
81	Switching the orbital angular momentum state of light with mode sorting assisted coherent laser array system. Optics Express, 2021, 29, 13428.	3.4	16
82	Powerful narrow linewidth random fiber laser. Photonic Sensors, 2017, 7, 82-87.	5.0	15
83	Power Scaling of Linearly Polarized Random Fiber Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-8.	2.9	15
84	High-power cladding pumped Raman fiber amplifier with a record beam quality. Optics Letters, 2020, 45, 2367.	3.3	15
85	Stable coherent beam combination by active phasing a mutual injection-locked fiber laser array. Optics Letters, 2010, 35, 950.	3.3	14
86	Theoretical and Numerical Study of the Threshold of Stimulated Brillouin Scattering in Multimode fibers. Journal of Lightwave Technology, 2015, 33, 4464-4470.	4.6	14
87	Coherent Beam Combining of a Fiber Lasers Array Based on Cascaded Phase Control. IEEE Photonics Technology Letters, 2016, 28, 2585-2588.	2.5	14
88	Towards tapered-fiber-based all-fiberized high power narrow linewidth fiber laser. Science China Technological Sciences, 2018, 61, 971-981.	4.0	14
89	Pure Passive Fiber Enabled Highly Efficient Raman Fiber Amplifier With Record Kilowatt Power. IEEE Access, 2019, 7, 28334-28339.	4.2	14
90	Analysis of Maximum Extractable Power of Single-Frequency \${m Yb}^{3+}\$-Doped Phosphate Fiber Sources. IEEE Journal of Quantum Electronics, 2012, 48, 480-484.	1.9	13

#	Article	IF	CITATIONS
91	1150-nm Yb-Doped Fiber Laser Pumped Directly by Laser-Diode With an Output Power of 52 W. IEEE Photonics Technology Letters, 2014, 26, 2327-2329.	2.5	13
92	Exploration in Performance Scaling and New Application Avenues of Superfluorescent Fiber Source. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-10.	2.9	13
93	High-peak-power temporally shaped nanosecond fiber laser immune to SPM-induced spectral broadening. High Power Laser Science and Engineering, 2019, 7, .	4.6	13
94	First Demonstration of a Bidirectional Tandem-Pumped High-Brightness 8 kW Level Confined-Doped Fiber Amplifier. Journal of Lightwave Technology, 2022, 40, 5673-5681.	4.6	13
95	A high-power narrow-linewidth 1018 nm fiber laser based on a single-mode–few-mode–single-mode structure. High Power Laser Science and Engineering, 2015, 3, .	4.6	12
96	Hundred-watt-level phosphosilicate Raman fiber laser with less than 1% quantum defect. Optics Letters, 2021, 46, 2662.	3.3	12
97	Revealing the dynamics of intensity fluctuation transfer in a random Raman fiber laser. Photonics Research, 2022, 10, 618.	7.0	12
98	Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence. Applied Optics, 2012, 51, 5609.	1.8	11
99	Generation of a 481-W Single Frequency and Linearly Polarized Beam by Coherent Polarization Locking. IEEE Photonics Technology Letters, 2013, 25, 1936-1938.	2.5	11
100	High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber las Scientific Reports, 2017, 7, 42402.	ser. 3.3	11
101	Concave Gold Bipyramid Saturable Absorber Based 1018 nm Passively Q-Switched Fiber Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-6.	2.9	11
102	Monolithic high-average-power linearly polarized nanosecond pulsed fiber laser with near-diffraction-limited beam quality. High Power Laser Science and Engineering, 2018, 6, .	4.6	11
103	High-efficiency all-fiber Raman fiber amplifier with record output power. Laser Physics Letters, 2018, 15, 085104.	1.4	11
104	Investigation on extreme frequency shift in silica fiber-based high-power Raman fiber laser. High Power Laser Science and Engineering, 2018, 6, .	4.6	11
105	Seeding High Brightness Fiber Amplifiers With Multi-Phase Coded Signal Modulation for SBS Effect Management. IEEE Access, 2020, 8, 127682-127689.	4.2	11
106	A 275-W Multitone Driven All-Fiber Amplifier Seeded by a Phase-Modulated Single-Frequency Laser for Coherent Beam Combining. IEEE Photonics Technology Letters, 2011, 23, 980-982.	2.5	10
107	Propagation property of a nonuniformly polarized beam array in turbulent atmosphere. Applied Optics, 2011, 50, 1234.	2.1	10
108	Highly efficient coherent conformal projection system based on adaptive fiber optics collimator array. Scientific Reports, 2019, 9, 2783.	3.3	10

#	Article	IF	CITATIONS
109	Seeing the beam cleanup effect in a high-power graded-index-fiber Raman amplifier based on mode decomposition. Optics Letters, 2021, 46, 4220.	3.3	10
110	2-kW-level superfluorescent fiber source with flexible wavelength and linewidth tunable characteristics. High Power Laser Science and Engineering, 2021, 9, .	4.6	10
111	Dual-wavelength random distributed feedback fiber laser with wavelength, linewidth, and power ratio tunability. Optics Express, 2020, 28, 10515.	3.4	10
112	Kilowatt-level, narrow linewidth, polarization-maintained all-fiber amplifiers based on multi-phase coded signal modulation and laser gain competition. Results in Physics, 2021, 31, 105050.	4.1	10
113	Coherent Polarization Beam Combining of Four High-Power Fiber Amplifiers Using Single-Frequency Dithering Technique. IEEE Photonics Technology Letters, 2012, 24, 1024-1026.	2.5	9
114	Cascaded telecom fiber enabled high-order random fiber laser beyond zero-dispersion wavelength. Optics Letters, 2020, 45, 4180.	3.3	9
115	Low quantum defect random Raman fiber laser. Optics Letters, 2022, 47, 1109.	3.3	9
116	Raman continuum generation at 1.0–1.3Âμm in passively mode-locked fiber laser based on nonlinear polarization rotation. Applied Physics B: Lasers and Optics, 2014, 117, 305-309.	2.2	8
117	Flexible spectral manipulation property of a high power linearly polarized random fiber laser. Scientific Reports, 2018, 8, 2173.	3.3	8
118	Kilowatt level Raman amplifier based on 100  µm core diameter multimode GRIN fiber with M ² = 1.6. Optics Letters, 2021, 46, 3432.	3.3	8
119	Higher-Order Airy Patterns and Their Application in Tailoring Orbital Angular Momentum Beams with Fiber Laser Arrays. Journal of Lightwave Technology, 2021, 39, 4758-4768.	4.6	8
120	High power, compact, passively Q-switched Ho-doped fiber laser tandem pumped by a 1150 nm Raman fiber laser. Laser Physics Letters, 2014, 11, 095101.	1.4	7
121	500 W level MOPA laser with switchable output modes based on active control. Optics Express, 2017, 25, 23275.	3.4	7
122	Comprehensive Investigation on the Role of Temporal Property of Pump Laser in a Single-Frequency Raman Fiber Amplifier. IEEE Photonics Journal, 2018, 10, 1-9.	2.0	7
123	Towards the Enhancement of the TMI Threshold in Monolithic High-Power Fiber System by Controlling the Pump Distribution and the Seed Power. IEEE Photonics Journal, 2018, 10, 1-12.	2.0	7
124	Evolution of Relative Intensity Noise in High-Power Narrow-Linewidth Fiber Laser Systems. Journal of Lightwave Technology, 2021, 39, 6413-6419.	4.6	7
125	Design considerations and performance analysis of a fiber laser array system for structuring orbital angular momentum beams: a simulation study. Optics Express, 2022, 30, 15279.	3.4	7
126	M ² factor estimation in few-mode fibers based on a shallow neural network. Optics Express, 2022, 30, 27304.	3.4	7

#	Article	IF	CITATIONS
127	Impact of Phase Perturbation on Passive Phase-Locking Coherent Beam Combination. IEEE Photonics Technology Letters, 2012, 24, 655-657.	2.5	6
128	Actively Coherent Beam Combining of Two Single-Frequency 1083 nm Nanosecond Fiber Amplifiers in Low-Repetition-Rate. IEEE Photonics Technology Letters, 2013, 25, 1485-1487.	2.5	6
129	Ultralong π-phase shift fiber Bragg grating empowered single-longitudinal mode DFB phosphate fiber laser with low-threshold and high-efficiency. Scientific Reports, 2018, 8, 13131.	3.3	6
130	All-Fiber Laser With Agile Mode-Switching Capability Through Intra-Cavity Conversion. IEEE Photonics Journal, 2020, 12, 1-9.	2.0	6
131	694 W sub-GHz polarization-maintained tapered fiber amplifier based on spectral and pump wavelength optimization. Optics Express, 2022, 30, 26875.	3.4	6
132	Cascaded four-wave mixing generation in photonic crystal fibers. Applied Physics B: Lasers and Optics, 2013, 113, 611-618.	2.2	5
133	High Power, High-Order Random Raman Fiber Laser Based on Tapered Fiber. IEEE Photonics Journal, 2017, 9, 1-6.	2.0	5
134	Propagation Properties of Gaussian Schell-Model Beam Array in the Jet Engine Exhaust Induced Turbulence. IEEE Photonics Journal, 2020, 12, 1-13.	2.0	5
135	Investigations on the Extreme Frequency Shift of Phosphosilicate Random Fiber Laser. Journal of Lightwave Technology, 2020, 38, 3737-3744.	4.6	5
136	Experimental studies of mode instability and thermal induced effects in all-fiber amplifier. , 2013, , .		4
137	Coherent beam combination of two fiber amplifiers with multi-dithering technique. Optoelectronics Letters, 2009, 5, 18-20.	0.8	3
138	All-Fiber-Integrated Narrowband Nanosecond Pulsed Tm-Doped Fiber MOPA. IEEE Photonics Technology Letters, 2015, 27, 1473-1476.	2.5	3
139	Numerical modeling of the thermally induced core laser leakage in high power co-pumped ytterbium doped fiber amplifier. High Power Laser Science and Engineering, 2018, 6, .	4.6	3
140	Efficient Lasing Through Raman-Assisted Four-Wave Mixing With Intrinsic Weak Spectral Broadening Characteristics. Journal of Lightwave Technology, 2022, 40, 1173-1180.	4.6	3
141	Phase-difference detection based on a double position sensing detector configuration for coherent combination. Applied Optics, 2008, 47, 4868.	2.1	2
142	Multiwavelength \$Q\$-switched Laser by Incorporating a LiNbO\$_{3}\$ Phase Modulator in Fabry–PÉrot Cavity. IEEE Photonics Technology Letters, 2009, 21, 1145-1147.	2.5	2
143	Experimental study of the SBS effect in multitone-driven narrow-linewidth high-power all-fiber amplifiers. , 2010, , .		2
144	Single-frequency linearly-polarized 1083Ânm all fiber nanosecond laser. Applied Physics B: Lasers and Optics, 2012, 109, 617-620.	2.2	2

#	Article	IF	CITATIONS
145	Widely tunable mode-locked all-fiberized Yb-doped fiber laser with near-transform-limited spectrum linewidth. Applied Physics B: Lasers and Optics, 2014, 116, 115-119.	2.2	2
146	Hybrid Ytterbium/Brillouin Gain Assisted Partial Mode Locking in Yb-Doped Fiber Laser. IEEE Photonics Journal, 2015, 7, 1-11.	2.0	2
147	Diode-Pumped 1178-nm High-Power Yb-Doped Fiber Laser Operating at 125 C. IEEE Photonics Journal, 2016, 8, 1-7.	2.0	2
148	Spectral Model of High-Power Ytterbium-Raman Fiber Amplifiers. Journal of Lightwave Technology, 2022, 40, 1130-1136.	4.6	2
149	Deep Learning of Coherent Laser Arrays in Angular Domain for Orbital Angular Momentum Beams Customization. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-10.	2.9	2
150	Phosphosilicate Fiber-Based Low Quantum Defect Raman Fiber Laser with Ultrahigh Spectral Purity. Nanomaterials, 2022, 12, 1490.	4.1	2
151	Analysis on Power Scalability of Multicore Fiber Laser. , 2008, , .		1
152	Coherent beam combining of triple-wavelength fiber laser based on cascaded fiber Bragg grating array. , 2010, , .		1
153	Efficient, 62.5 watts all-fiber single-mode 1091 nm MOPA laser. Frontiers of Optoelectronics in China, 2011, 4, 426-429.	0.2	1
154	Coherent polarization beam combining of four two-tone lasers using single-frequency dithering technique. Applied Physics B: Lasers and Optics, 2012, 109, 269-275.	2.2	1
155	Fiber fuse effect in high-power double-clad fiber laser. , 2013, , .		1
156	First experimental demonstration of quasi static mode instability in high power fiber laser. , 2017, , .		1
157	Seeing the Modes in Few-Mode Fibers through Deep Learning. , 2018, , .		1
158	Tunable Random Raman Fiber Laser at 1.7 Î $^{1}\!4$ m Region with High Spectral Purity. , 2019, , .		1
159	Phase-locked polarization maintaining narrow linewidth Yb-doped fiber laser array. , 2010, , .		0
160	Coherent beam combining of kilo-watt high-average-power narrow-linewidth nanosecond fiber amplifiers. , 2013, , .		0
161	Single-frequency nanosecond fiber laser based on self-phase modulation pre-compensation. , 2013, , .		0
162	Nanosecond square pulses with triangular spectral profile generated from an all-normal-dispersion passively mode-locked Yb-doped fiber laser. , 2014, , .		0

#	Article	IF	CITATIONS
163	Theoretical study of the threshold of stimulated Brillouin scattering in multimode fibers. , 2015, , .		Ο
164	Linearly-polarized high-order random fiber laser with record hundred-watt output power. , 2017, , .		0
165	A 621 W linearly polarized, near-diffraction-limited MOPA seeded by random fiber laser. , 2017, , .		0
166	High-efficiency pulsed Tm-doped fiber amplifier. , 2017, , .		0
167	Tandem pumping architecture leveraged performance scalability of superfluorescent fiber source to 3 kW level with excellent beam quality. , 2017, , .		Ο
168	Mid-infrared fluoride Raman fiber laser pumped by Erbium doped fluoride fiber laser. , 2017, , .		0
169	The rising power of random fiber laser. , 2017, , .		Ο
170	Self-started stable pulsing operation of random fiber laser. , 2017, , .		0
171	Linearly-polarized narrow-linewidth random fiber laser seeded fiber MOPA. , 2017, , .		Ο
172	Experimental Demonstration of the Influence of Cooling Temperature on the Thermal Mode Instability in the YB-Doped Fiber Oscillator. IEEE Photonics Journal, 2021, 13, 1-5.	2.0	0
173	Corrections to "Propagation Properties of Gaussian Schell-Model Beam Array in the Jet Engine Exhaust Induced Turbulence―[Dec 20 Art no. 6501113]. IEEE Photonics Journal, 2022, 14, 1-1.	2.0	Ο
174	Coherent Beam Combining as a Multidisciplinary Education and Training Environment. , 2021, , .		0
175	Deep-learning-based coherent fiber laser array system for power scaling and spatial light structuring. , 2022, , .		0