John J Woodward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8321566/publications.pdf

Version: 2024-02-01

66315 82499 6,224 134 42 72 citations h-index g-index papers 140 140 140 6245 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cannabinoid receptor type 1 antagonists alter aspects of risk/reward decision making independent of toluene-mediated effects. Psychopharmacology, 2022, 239, 1337-1347.	1.5	3
2	The lateral habenula is not required for ethanol dependence-induced escalation of drinking. Neuropsychopharmacology, 2022, 47, 2123-2131.	2.8	4
3	The escalation in ethanol consumption following chronic intermittent ethanol exposure is blunted in mice expressing ethanol-resistant GluN1 or GluN2A NMDA receptor subunits. Psychopharmacology, 2021, 238, 271-279.	1.5	4
4	Interaction of chronic intermittent ethanol and repeated stress on structural and functional plasticity in the mouse medial prefrontal cortex. Neuropharmacology, 2021, 182, 108396.	2.0	12
5	Chronic ethanol exposure differentially alters neuronal function in the medial prefrontal cortex and dentate gyrus. Neuropharmacology, 2021, 185, 108438.	2.0	15
6	Altered Activity of Lateral Orbitofrontal Cortex Neurons in Mice following Chronic Intermittent Ethanol Exposure. ENeuro, 2021, 8, ENEURO.0503-20.2021.	0.9	13
7	Ethanol inhibition of lateral orbitofrontal cortex neuron excitability is mediated via dopamine D1/D5 receptor-induced release of astrocytic glycine. Neuropharmacology, 2021, 192, 108600.	2.0	5
8	Sexâ€dependent differences in ethanol inhibition of mouse lateral orbitofrontal cortex neurons. Addiction Biology, 2020, 25, e12698.	1.4	11
9	InÂvivo two-photon imaging of neuronal and brain vascular responses in mice chronically exposed to ethanol. Alcohol, 2020, 85, 41-47.	0.8	11
10	Knockâ€in Mice Expressing an Ethanolâ€Resistant GluN2A NMDA Receptor Subunit Show Altered Responses to Ethanol. Alcoholism: Clinical and Experimental Research, 2020, 44, 479-491.	1.4	9
11	Cell-Permeable Calpain Inhibitor SJA6017 Provides Functional Protection to Spinal Motoneurons Exposed to MPP+. Neurotoxicity Research, 2020, 38, 640-649.	1.3	10
12	Acute Ethanol Exposure Enhances Synaptic Plasticity in the Dorsal Striatum in Adult Male and Female Rats. Brain Plasticity, 2020, 6, 113-122.	1.9	3
13	Self-Administration of Toluene Vapor in Rats. Frontiers in Neuroscience, 2020, 14, 880.	1.4	6
14	Distinct Region- and Time-Dependent Functional Cortical Adaptations in C57BL/6J Mice after Short and Prolonged Alcohol Drinking. ENeuro, 2020, 7, ENEURO.0077-20.2020.	0.9	24
15	An Unexpected Dependence of Cortical Depth in Shaping Neural Responsiveness and Selectivity in Mouse Visual Cortex. ENeuro, 2020, 7, ENEURO.0497-19.2020.	0.9	11
16	The Abused Inhalant Toluene Impairs Medial Prefrontal Cortex Activity and Risk/Reward Decision-Making during a Probabilistic Discounting Task. Journal of Neuroscience, 2019, 39, 9207-9220.	1.7	19
17	Chronic Alcohol, Intrinsic Excitability, and Potassium Channels: Neuroadaptations and Drinking Behavior. Handbook of Experimental Pharmacology, 2018, 248, 311-343.	0.9	28
18	Loss of Ethanol Inhibition of <i>N</i> â€Methylâ€Dâ€Aspartate Receptorâ€Mediated Currents and Plasticity of Cerebellar Synapses in Mice Expressing the GluN1(F639A) Subunit. Alcoholism: Clinical and Experimental Research, 2018, 42, 698-705.	1.4	10

#	Article	IF	Citations
19	Chemogenetic Excitation of Accumbens-Projecting Infralimbic Cortical Neurons Blocks Toluene-Induced Conditioned Place Preference. Journal of Neuroscience, 2018, 38, 1462-1471.	1.7	19
20	Effects of drugs of abuse on channelrhodopsin-2 function. Neuropharmacology, 2018, 135, 316-327.	2.0	2
21	Exposure to the Abused Inhalant Toluene Alters Medial Prefrontal Cortex Physiology. Neuropsychopharmacology, 2018, 43, 912-924.	2.8	19
22	Effects of monoamines on the intrinsic excitability of lateral orbitofrontal cortex neurons in alcohol-dependent and non-dependent female mice. Neuropharmacology, 2018, 137, 1-12.	2.0	14
23	Opposing actions of CRF-R1 and CB1 receptors on VTA-GABAergic plasticity following chronic exposure to ethanol. Neuropsychopharmacology, 2018, 43, 2064-2074.	2.8	20
24	Increasing Brain-Derived Neurotrophic Factor (BDNF) in medial prefrontal cortex selectively reduces excessive drinking in ethanol dependent mice. Neuropharmacology, 2018, 140, 35-42.	2.0	25
25	Ethanol Dependence Abolishes Monoamine and GIRK (Kir3) Channel Inhibition of Orbitofrontal Cortex Excitability. Neuropsychopharmacology, 2017, 42, 1800-1812.	2.8	39
26	Prefrontal Cortex K _{Ca} 2 Channels Regulate mGlu ₅ -Dependent Plasticity and Extinction of Alcohol-Seeking Behavior. Journal of Neuroscience, 2017, 37, 4359-4369.	1.7	32
27	Orbitofrontal Neuroadaptations and Cross-Species Synaptic Biomarkers in Heavy-Drinking Macaques. Journal of Neuroscience, 2017, 37, 3646-3660.	1.7	43
28	Persistent cognitive and morphological alterations induced by repeated exposure of adolescent rats to the abused inhalant toluene. Neurobiology of Learning and Memory, 2017, 144, 136-146.	1.0	13
29	Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors. Frontiers in Neuroscience, 2017, 11, 84.	1.4	15
30	The Effects of Abused Inhalants on Neurons Within the Addiction Neurocircuitry of the Brain. , 2016, , 964-978.		0
31	Differential Effects of Toluene and Ethanol on Dopaminergic Neurons of the Ventral Tegmental Area. Frontiers in Neuroscience, 2016, 10, 434.	1.4	21
32	A novel substituted aminoquinoline selectively targets voltage-sensitive sodium channel isoforms and NMDA receptor subtypes and alleviates chronic inflammatory and neuropathic pain. European Journal of Pharmacology, 2016, 784, 1-14.	1.7	4
33	Inactivation of the lateral orbitofrontal cortex increases drinking in ethanol-dependent but not non-dependent mice. Neuropharmacology, 2016, 107, 451-459.	2.0	41
34	Differential effects of TM4 tryptophan mutations on inhibition of N-methyl-d-aspartate receptors by ethanol and toluene. Alcohol, 2016, 56, 15-19.	0.8	13
35	Altered <scp>NMDA</scp> receptor function in primary cultures of hippocampal neurons from mice lacking the <scp><i>H</i></scp> <i>omer2</i> gene. Synapse, 2016, 70, 33-39.	0.6	15
36	Disruption of S2-M4 linker coupling reveals novel subunit-specific contributions to N-methyl-d-aspartate receptor function and ethanol sensitivity. Neuropharmacology, 2016, 105, 96-105.	2.0	5

#	Article	IF	Citations
37	Chronic Intermittent Ethanol Exposure Enhances the Excitability and Synaptic Plasticity of Lateral Orbitofrontal Cortex Neurons and Induces a Tolerance to the Acute Inhibitory Actions of Ethanol. Neuropsychopharmacology, 2016, 41, 1112-1127.	2.8	91
38	Phenotype-dependent inhibition of glutamatergic transmission on nucleus accumbens medium spiny neurons by the abused inhalant toluene. Addiction Biology, 2016, 21, 530-546.	1.4	11
39	Cysteine Substitution of Transmembrane Domain Amino Acids Alters the Ethanol Inhibition of GluN1/GluN2A <i>N</i> -Methyl-d-Aspartate Receptors. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 91-101.	1.3	12
40	Withdrawal from chronic intermittent alcohol exposure increases dendritic spine density in the lateral orbitofrontal cortex of mice. Alcohol, 2015, 49, 21-27.	0.8	49
41	KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction. Neuropsychopharmacology, 2015, 40, 1928-1939.	2.8	47
42	Chronic ethanol alters network activity and endocannabinoid signaling in the prefrontal cortex. Frontiers in Integrative Neuroscience, 2014, 8, 58.	1.0	20
43	Effects of the Abused Inhalant Toluene on the Mesolimbic Dopamine System. Journal of Drug and Alcohol Research, 2014, 3, 1-8.	0.9	13
44	Review of Toluene Actions: Clinical Evidence, Animal Studies, and Molecular Targets. Journal of Drug and Alcohol Research, 2014, 3, 1-8.	0.9	69
45	Glutamate Signaling in Alcohol Abuse and Dependence. , 2014, , 173-206.		9
46	Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nature Neuroscience, 2014, 17, 577-585.	7.1	314
47	Endocannabinoid Modulation of Cortical Up-States and NREM Sleep. PLoS ONE, 2014, 9, e88672.	1.1	37
48	Deletion of the N-Terminal Domain Alters the Ethanol Inhibition of α is N-\(\frac{1}{2}\) of \(\frac{1}{2}\) of \(\frac{1}{2	1.4	11
49	Ethanol Reduces Neuronal Excitability of Lateral Orbitofrontal Cortex Neurons Via a Glycine Receptor Dependent Mechanism. Neuropsychopharmacology, 2013, 38, 1176-1188.	2.8	69
50	Genome-wide Generation and Systematic Phenotyping of Knockout Mice Reveals New Roles for Many Genes. Cell, 2013, 154, 452-464.	13.5	449
51	Dephosphorylation of GluN2B C-terminal tyrosine residues does not contribute to acute ethanol inhibition of recombinant NMDA receptors. Alcohol, 2013, 47, 181-186.	0.8	6
52	Volatile Solvents as Drugs of Abuse: Focus on the Cortico-Mesolimbic Circuitry. Neuropsychopharmacology, 2013, 38, 2555-2567.	2.8	45
53	Medial Prefrontal Cortex Inversely Regulates Toluene-Induced Changes in Markers of Synaptic Plasticity of Mesolimbic Dopamine Neurons. Journal of Neuroscience, 2013, 33, 804-813.	1.7	36
54	Alterations in Ethanol-Induced Behaviors and Consumption in Knock-In Mice Expressing Ethanol-Resistant NMDA Receptors. PLoS ONE, 2013, 8, e80541.	1.1	34

#	Article	IF	CITATIONS
55	Preâ€TM4 residues of GluN2 subunits modulate the function of recombinant Nâ€methylâ€Dâ€aspartate (NMDA) receptors. FASEB Journal, 2013, 27, lb519.	0.2	0
56	Ethanol Inhibition of Constitutively Open $\langle i \rangle N \langle i \rangle$ -Methyl-d-Aspartate Receptors. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 218-226.	1.3	26
57	A review of the interactions between alcohol and the endocannabinoid system: Implications for alcohol dependence and future directions for research. Alcohol, 2012, 46, 185-204.	0.8	130
58	Ethanol Inhibition of Upâ€States in Prefrontal Cortical Neurons Expressing the Genetically Encoded Calcium Indicator GCaMP3. Alcoholism: Clinical and Experimental Research, 2012, 36, 780-787.	1.4	6
59	Tolerance to cannabinoid-induced behaviors in mice treated chronically with ethanol. Psychopharmacology, 2012, 219, 137-147.	1.5	26
60	The Abused Inhalant Toluene Differentially Modulates Excitatory and Inhibitory Synaptic Transmission in Deep-Layer Neurons of the Medial Prefrontal Cortex. Neuropsychopharmacology, 2011, 36, 1531-1542.	2.8	42
61	Small Conductance Calcium-Activated Potassium Type 2 Channels Regulate Alcohol-Associated Plasticity of Glutamatergic Synapses. Biological Psychiatry, 2011, 69, 625-632.	0.7	59
62	Effects of ethanol on phosphorylation site mutants of recombinant N-methyl-d-aspartate receptors. Alcohol, 2011, 45, 373-380.	0.8	11
63	Effects of chronic intermittent ethanol exposure on orbitofrontal and medial prefrontal cortex-dependent behaviors in mice Behavioral Neuroscience, 2011, 125, 879-891.	0.6	78
64	The inhibition of apoptosis by melatonin in VSC4.1 motoneurons exposed to oxidative stress, glutamate excitotoxicity, or TNF- \hat{l} ± toxicity involves membrane melatonin receptors. Journal of Pineal Research, 2010, 48, 157-169.	3.4	86
65	Alcohol and the Prefrontal Cortex. International Review of Neurobiology, 2010, 91, 289-320.	0.9	141
66	Expression of Glycine-Activated Diheteromeric NR1/NR3 Receptors in Human Embryonic Kidney 293 Cells Is NR1 Splice Variant-Dependent. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 975-984.	1.3	31
67	Interferon-α Causes Neuronal Dysfunction in Encephalitis. Journal of Neuroscience, 2009, 29, 3948-3955.	1.7	74
68	Estrogen attenuates glutamate-induced cell death by inhibiting Ca2+ influx through L-type voltage-gated Ca2+ channels. Brain Research, 2009, 1276, 159-170.	1.1	63
69	Effects of Ethanol on Persistent Activity and Upâ€States in Excitatory and Inhibitory Neurons in Prefrontal Cortex. Alcoholism: Clinical and Experimental Research, 2009, 33, 2134-2140.	1.4	27
70	Ethanol disrupts NMDA receptor and astroglial EAAT2 modulation of Kv2.1 potassium channels in hippocampus. Alcohol, 2009, 43, 45-50.	0.8	22
71	GABA $<$ sub $>$ A $<$ /sub $>$ Î \pm 4 Receptor Subunits and Ethanol: A Knockout Punch?. Alcoholism: Clinical and Experimental Research, 2008, 32, 8-9.	1.4	О
72	Ethanol inhibition of recombinant NMDA receptors is not altered by coexpression of CaMKII-α or CaMKII-β. Alcohol, 2008, 42, 425-432.	0.8	22

#	Article	IF	CITATIONS
73	Ethanol Selectively Attenuates NMDARâ€Mediated Synaptic Transmission in the Prefrontal Cortex. Alcoholism: Clinical and Experimental Research, 2008, 32, 690-698.	1.4	70
74	Enhanced Ethanol Inhibition of Recombinant <i>N</i> à€methylâ€ <scp>D</scp> â€aspartate Receptors by Magnesium: Role of NR3A Subunits. Alcoholism: Clinical and Experimental Research, 2008, 32, 1059-1066.	1.4	22
75	Roles of ectodomain and transmembrane regions in ethanol and agonist action in purinergic P2X2 and P2X3 receptors. Neuropharmacology, 2008, 55, 835-843.	2.0	26
76	Glutamate Transporters Regulate Extrasynaptic NMDA Receptor Modulation of Kv2.1 Potassium Channels. Journal of Neuroscience, 2008, 28, 8801-8809.	1.7	64
77	Ethanol Inhibits Persistent Activity in Prefrontal Cortical Neurons. Journal of Neuroscience, 2007, 27, 4765-4775.	1.7	89
78	Pharmacological Characterization of Glycine-Activated Currents in HEK 293 Cells Expressing N-Methyl-D-aspartate NR1 and NR3 Subunits. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 739-748.	1.3	95
79	Ethanol inhibition of NMDA receptors under conditions of altered protein kinaseâ€∫A activity. Journal of Neurochemistry, 2006, 96, 1760-1767.	2.1	24
80	Effects of Amino Acid Substitutions in Transmembrane Domains of the NR1 Subunit on the Ethanol Inhibition of Recombinant N-Methyl-d-aspartate Receptors. Alcoholism: Clinical and Experimental Research, 2006, 30, 523-530.	1.4	56
81	Effects of 8 Different NR1 Splice Variants on the Ethanol Inhibition of Recombinant NMDA Receptors. Alcoholism: Clinical and Experimental Research, 2006, 30, 673-679.	1.4	47
82	Calpeptin provides functional neuroprotection to rat retinal ganglion cells following Ca2+ influx. Brain Research, 2006, 1084, 146-157.	1.1	74
83	Effects of the abused inhalant toluene on ethanol-sensitive potassium channels expressed in oocytes. Brain Research, 2006, 1087, 75-82.	1.1	35
84	Effects of Anesthetics on Mutant N-Methyl-d-Aspartate Receptors Expressed in Xenopus Oocytes. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 434-443.	1.3	89
85	Calpain activation in apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons exposed to glutamate: Calpain inhibition provides functional neuroprotection. Journal of Neuroscience Research, 2005, 81, 551-562.	1.3	79
86	Perturbation of Voltage-Sensitive Ca2+ Channel Function by Volatile Organic Solvents. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1109-1118.	1.3	59
87	Inhibition of gap junction currents by the abused solvent toluene. Drug and Alcohol Dependence, 2005, 78, 221-224.	1.6	17
88	Ethanol differentially affects ATP-gated P2X and P2X receptor subtypes expressed in oocytes. Neuropharmacology, 2005, 49, 243-253.	2.0	73
89	Chronic Ethanol Induces Synaptic But Not Extrasynaptic Targeting of NMDA Receptors. Journal of Neuroscience, 2004, 24, 7859-7868.	1.7	149
90	Fyn kinase does not reduce ethanol inhibition of zinc-insensitive NR2A-containing N-methyl-d-aspartate receptors. Alcohol, 2004, 34, 101-105.	0.8	6

#	Article	IF	CITATIONS
91	Effects of the abused solvent toluene on recombinant P2X receptors expressed in HEK293 cells. Molecular Brain Research, 2004, 125, 86-95.	2.5	30
92	Effect of the NR3 subunit on ethanol inhibition of recombinant NMDA receptors. Brain Research, 2003, 987, 117-121.	1.1	26
93	Ethanol inhibition of recombinant NR1/2A receptors: effects of heavy metal chelators and a zinc-insensitive NR2A mutant. Alcohol, 2003, 31, 71-76.	0.8	7
94	Inhibition of neuronal nicotinic acetylcholine receptors by the abused solvent, toluene. British Journal of Pharmacology, 2002, 137, 375-383.	2.7	89
95	Toluene inhibits voltage-sensitive calcium channels expressed in pheochromocytoma cells. Neurochemistry International, 2002, 41, 391-397.	1.9	46
96	Glutamate and GABA get together. Trends in Pharmacological Sciences, 2002, 23, 537.	4.0	0
97	Prostacyclin-induced rundown of N-methyl-d-aspartate receptor currents in HEK293 cells is protein kinase A-dependent and NR2 subunit-selective. Journal of Neurochemistry, 2002, 80, 598-604.	2.1	3
98	Ethanol sensitivity of recombinant human N-methyl-d-aspartate receptors. Neurochemistry International, 2001, 38, 333-340.	1.9	32
99	Measurement of Nitric Oxide and Brain Tissue Oxygen Tension in Patients after Severe Subarachnoid Hemorrhage. Neurosurgery, 2001, 49, 33-40.	0.6	38
100	Effects of Nitric Oxide on Reactive Oxygen Species Production and Infarction Size after Brain Reperfusion Injury. Neurosurgery, 2001, 48, 884-893.	0.6	42
101	Fyn Tyrosine Kinase Reduces the Ethanol Inhibition of Recombinant NR1/NR2A but Not NR1/NR2B NMDA Receptors Expressed in HEK 293 Cells. Journal of Neurochemistry, 2001, 72, 1389-1393.	2.1	47
102	Ethanol Inhibition of N-Methyl-d-aspartate Receptors Is Reduced by Site-directed Mutagenesis of a Transmembrane Domain Phenylalanine Residue. Journal of Biological Chemistry, 2001, 276, 44729-44735.	1.6	109
103	Effects of volatile solvents on recombinant N -methyl-D -aspartate receptors expressed in Xenopus oocytes. British Journal of Pharmacology, 2000, 131, 1303-1308.	2.7	94
104	Reduced Ethanol Inhibition of N-Methyl-d-aspartate Receptors by Deletion of the NR1 CO Domain or Overexpression of α-Actinin-2 Proteins. Journal of Biological Chemistry, 2000, 275, 15019-15024.	1.6	34
105	Activation of Mitogen-Activated Protein Kinases Is Required for $\hat{l}\pm 1$ -Adrenergic Agonist-Induced Cell Scattering in Transfected HepG2 Cells. Experimental Cell Research, 2000, 258, 109-120.	1.2	19
106	Effects of ethanol on three endogenous membrane conductances present in Xenopus laevis oocytes. Neurochemistry International, 2000, 36, 67-74.	1.9	7
107	Ethanol and NMDA Receptor Signaling. Critical Reviews in Neurobiology, 2000, 14, 20.	3.3	108
108	Effects of c-Src Tyrosine Kinase on Ethanol Sensitivity of Recombinant NMDA Receptors Expressed in HEK 293 Cells. Alcoholism: Clinical and Experimental Research, 1999, 23, 357-362.	1.4	31

#	Article	IF	Citations
109	lonotropic glutamate receptors as sites of action for ethanol in the brain. Neurochemistry International, 1999, 35, 107-113.	1.9	80
110	Factors affecting excitatory amino acid release following severe human head injury. Journal of Neurosurgery, 1998, 89, 507-518.	0.9	457
111	Increased Free Radical Production Due to Subdural Hematoma in the Rat: Effect of Increased Inspired Oxygen Fraction. Journal of Neurotrauma, 1998, 15, 337-347.	1.7	44
112	Intracellular Calcium Enhances the Ethanol Sensitivity of NMDA Receptors Through an Interaction with the CO Domain of the NR1 Subunit. Journal of Neurochemistry, 1998, 71, 1095-1107.	2.1	38
113	Continuous Monitoring of Cerebral Substrate Delivery and Clearance: Initial Experience in 24 Patients with Severe Acute Brain Injuries. Neurosurgery, 1997, 41, 1082-1093.	0.6	207
114	Opiate modulation of striatal dopamine and hippocampal norepinephrine release following morphine withdrawal. Neurochemical Research, 1997, 22, 239-248.	1.6	13
115	Effects of Acute and Chronic Ethanol Exposure on Heteromeric <i>N</i> â€Methylâ€∢scp>dâ€Aspartate Receptors Expressed in HEK 293 Cells. Journal of Neurochemistry, 1997, 69, 2345-2354.	2.1	67
116	A use-dependent sodium channel antagonist, 619C89, in reduction of ischemic brain damage and glutamate release after acute subdural hematoma in the rat. Journal of Neurosurgery, 1996, 85, 104-111.	0.9	29
117	Increased agonist and antagonist sensitivity of N-methyl-d-aspartate stimulated calcium flux in cultured neurons following chronic ethanol exposure. Neuroscience Letters, 1995, 200, 214-218.	1.0	47
118	A Comparison of the Effects of Ethanol and the Competitive Glycine Antagonist 7â€Chlorokynurenic Acid on <i>N</i> à€Methylâ€ <scp>d</scp> â€Aspartic Acidâ€Induced Neurotransmitter Release from Rat Hippocampal Slices. Journal of Neurochemistry, 1994, 62, 987-991.	2.1	38
119	Neuropharmacology of ethanol, new approaches. Trends in Pharmacological Sciences, 1992, 13, 126-127.	4.0	7
120	Potentiation of N-Methyl-d-Aspartate-Stimulated Dopamine Release from Rat Brain Slices by Aluminum Fluoride and Carbachol. Journal of Neurochemistry, 1992, 58, 1547-1554.	2.1	11
121	Redox Modulation of N-Methyl-D-Aspartate-Stimulated Neurotransmitter Release from Rat Brain Slices. Journal of Neurochemistry, 1991, 57, 2059-2064.	2.1	27
122	Ethanol Inhibition of N-Methyl-D-Aspartate-Stimulated Endogenous Dopamine Release from Rat Striatal Slices: Reversal by Glycine. Journal of Neurochemistry, 1990, 54, 712-715.	2.1	172
123	Chronic ethanol treatment alters ï‰-conotoxin and Bay K 8644 sensitive calcium channels in rat striatal synaptosomes. Alcohol, 1990, 7, 279-284.	0.8	18
124	Behavioral sensitization following a single apomorphine pretreatment — selective effects on the dopamine release process. Brain Research, 1990, 528, 109-113.	1.1	8
125	Behavioral sensitization following subchronic apomorphine treatment — possible neurochemical basis. Brain Research, 1990, 526, 37-44.	1.1	21
126	Ethanol and inositol 1,4,5-trisphosphate mobilize calcium from rat brain microsomes. Alcohol, 1989, 6, 431-436.	0.8	19

#	Article	IF	CITATION
127	Aging does not alter the voltage-dependent release of endogenous dopamine from mouse striatal synaptosomes. Neuroscience Letters, 1989, 97, 191-197.	1.0	9
128	Fura-2 measurement of cytosolic free calcium in rat brain cortical synaptosomes and the influence of ethanol. Alcohol, 1989, 6, 341-345.	0.8	22
129	Differential sensitivity of synaptosomal calcium entry and endogenous dopamine release to li‰-conotoxin. Brain Research, 1988, 475, 141-145.	1.1	48
130	Calcium-dependent and -independent release of endogenous dopamine from rat striatal synaptosomes. Brain Research, 1988, 473, 91-98.	1.1	34
131	Dopamine uptake during fast-phase endogenous dopamine release from mouse striatal synaptosomes. Neuroscience Letters, 1986, 71, 106-112.	1.0	19
132	Bay K 8644 stimulation of calcium entry and endogenous dopamine release in rat striatal synaptosomes antagonized by nimodipine. Brain Research, 1986, 370, 397-400.	1.1	113
133	Subdivision of Mouse Brain [³ H]Imipramine Binding Based on Ion Dependence and Serotonin Sensitivity. Journal of Neurochemistry, 1986, 46, 1743-1754.	2.1	33
134	Correlation of rates of calcium entry and endogenous dopamine release in mouse striatal synaptosomes. Brain Research, 1985, 325, 99-105.	1.1	72