Sheref S Mansy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8321462/publications.pdf

Version: 2024-02-01

69 papers

3,925 citations

32 h-index 139680 61 g-index

73 all docs 73 docs citations

73 times ranked 3822 citing authors

#	Article	IF	CITATIONS
1	Origins of life: Encapsulating Darwinian evolution. Current Biology, 2022, 32, R44-R46.	1.8	O
2	Treatment of Wound Infections in a Mouse Model Using Zn ²⁺ -Releasing Phage Bound to Gold Nanorods. ACS Nano, 2022, 16, 4756-4774.	7.3	38
3	Metals Are Integral to Life as We Know It. Frontiers in Cell and Developmental Biology, 2022, 10, 864830.	1.8	6
4	Prebiotic Environments with Mg ²⁺ and Thiophilic Metal Ions Increase the Thermal Stability of Cysteine and Non-cysteine Peptides. ACS Earth and Space Chemistry, 2022, 6, 1221-1226.	1,2	1
5	Protometabolism as out-of-equilibrium chemistry. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	3
6	Histidine Ligated Ironâ€Sulfur Peptides. ChemBioChem, 2022, 23, .	1.3	4
7	Population-Level Membrane Diversity Triggers Growth and Division of Protocells. Jacs Au, 2021, 1, 560-568.	3.6	18
8	Protometabolic Reduction of NAD ⁺ with α-Keto Acids. Jacs Au, 2021, 1, 371-374.	3.6	11
9	Spectral decomposition of iron-sulfur clusters. Analytical Biochemistry, 2021, 629, 114269.	1.1	6
10	Racing toward Fast and Effective ¹⁷ O Isotopic Labeling and Nuclear Magnetic Resonance Spectroscopy of N-Formyl-MLF-OH and Associated Building Blocks. Journal of Physical Chemistry B, 2021, 125, 11916-11926.	1,2	6
11	Cyclophospholipids Increase Protocellular Stability to Metal Ions. Small, 2020, 16, e1903381.	5.2	32
12	Cellâ€Free Synthesis of Dopamine and Serotonin in Two Steps with Purified Enzymes. Advanced Biology, 2020, 4, e2000118.	3.0	4
13	Artificial cells drive neural differentiation. Science Advances, 2020, 6, .	4.7	78
14	Progress in synthesizing protocells. Experimental Biology and Medicine, 2019, 244, 304-313.	1.1	41
15	Toward long-lasting artificial cells that better mimic natural living cells. Emerging Topics in Life Sciences, 2019, 3, 597-607.	1.1	18
16	Investigation of glutathione-derived electrostatic and hydrogen-bonding interactions and their role in defining Grx5 [2Fe–2S] cluster optical spectra and transfer chemistry. Journal of Biological Inorganic Chemistry, 2018, 23, 241-252.	1.1	6
17	Optimized Assembly of a Multifunctional RNA-Protein Nanostructure in a Cell-Free Gene Expression System. Nano Letters, 2018, 18, 2650-2657.	4.5	24
18	Gene-Mediated Chemical Communication in Synthetic Protocell Communities. ACS Synthetic Biology, 2018, 7, 339-346.	1.9	136

#	Article	IF	Citations
19	Incorporating LsrK Alâ€2 quorum quenching capability in a functionalized biopolymer capsule. Biotechnology and Bioengineering, 2018, 115, 278-289.	1.7	12
20	Prebiotic iron–sulfur peptide catalysts generate a pH gradient across model membranes of late protocells. Nature Catalysis, 2018, 1, 616-623.	16.1	77
21	Cell-Free Translation Is More Variable than Transcription. ACS Synthetic Biology, 2017, 6, 638-647.	1.9	39
22	Non-living predators. Nature Chemistry, 2017, 9, 107-108.	6.6	4
23	Two-Way Chemical Communication between Artificial and Natural Cells. ACS Central Science, 2017, 3, 117-123.	5.3	178
24	The Chemical Roots of Iron–Sulfur Dependent Metabolism. Biochemistry, 2017, 56, 5225-5226.	1.2	6
25	Patterns of Ligands Coordinated to Metallocofactors Extracted from the Protein Data Bank. Journal of Chemical Information and Modeling, 2017, 57, 3162-3171.	2.5	13
26	UV-light-driven prebiotic synthesis of iron–sulfur clusters. Nature Chemistry, 2017, 9, 1229-1234.	6.6	110
27	Communicating artificial cells. Current Opinion in Chemical Biology, 2016, 34, 53-61.	2.8	75
28	Metal Catalysts and the Origin of Life. Elements, 2016, 12, 413-418.	0.5	37
29	Cysteine containing dipeptides show a metal specificity that matches the composition of seawater. Physical Chemistry Chemical Physics, 2016, 18, 20104-20108.	1.3	13
30	Duplications of an iron–sulphur tripeptide leads to the formation of a protoferredoxin. Chemical Communications, 2016, 52, 13456-13459.	2.2	35
31	An in vitro selection for small molecule induced switching RNA molecules. Methods, 2016, 106, 51-57.	1.9	9
32	Xenobiotic Life. , 2016, , 337-357.		0
33	<i>In Vitro</i> Selection for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity. ACS Synthetic Biology, 2015, 4, 1144-1150.	1.9	23
34	Ethylene-Producing Bacteria That Ripen Fruit. ACS Synthetic Biology, 2014, 3, 935-938.	1.9	29
35	Gene Position More Strongly Influences Cell-Free Protein Expression from Operons than T7 Transcriptional Promoter Strength. ACS Synthetic Biology, 2014, 3, 363-371.	1.9	64
36	Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nature Communications, 2014, 5, 4012.	5.8	210

#	Article	IF	CITATIONS
37	Vesicle Stability and Dynamics: An Undergraduate Biochemistry Laboratory. Journal of Chemical Education, 2014, 91, 1228-1231.	1.1	8
38	Multiphase Water-in-Oil Emulsion Droplets for Cell-Free Transcription–Translation. Langmuir, 2014, 30, 5695-5699.	1.6	86
39	Measuring Riboswitch Activity In Vitro and in Artificial Cells with Purified Transcription–Translation Machinery. Methods in Molecular Biology, 2014, 1111, 153-164.	0.4	4
40	Fluorescent Proteins and <i>in Vitro</i> Genetic Organization for Cell-Free Synthetic Biology. ACS Synthetic Biology, 2013, 2, 482-489.	1.9	44
41	The Encapsulation of Cell-free Transcription and Translation Machinery in Vesicles for the Construction of Cellular Mimics. Journal of Visualized Experiments, 2013, , e51304.	0.2	12
42	Piecing Together Cell-like Systems. Current Organic Chemistry, 2013, 17, 1751-1757.	0.9	7
43	Nonreplicating Protocells. Accounts of Chemical Research, 2012, 45, 2125-2130.	7.6	16
44	Cellular imitations. Current Opinion in Chemical Biology, 2012, 16, 586-592.	2.8	38
45	Cell-like systems with riboswitch controlled gene expression. Chemical Communications, 2011, 47, 10734.	2.2	63
46	Intravesicle Isothermal DNA Replication. BMC Research Notes, 2011, 4, 128.	0.6	6
47	Redox chemistry of the Schizosaccharomyces pombe ferredoxin electron-transfer domain and influence of Cys to Ser substitutions. Journal of Inorganic Biochemistry, 2011, 105, 806-811.	1.5	10
48	Control of reduction thermodynamics in [2Fe–2S] ferredoxins. Journal of Inorganic Biochemistry, 2010, 104, 691-696.	1.5	12
49	Membrane Transport in Primitive Cells. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002188-a002188.	2.3	90
50	Model Protocells from Single-Chain Lipids. International Journal of Molecular Sciences, 2009, 10, 835-843.	1.8	44
51	Reconstructing the Emergence of Cellular Life through the Synthesis of Model Protocells. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 47-54.	2.0	84
52	Flip-Flop-Induced Relaxation of Bending Energy: Implications for Membrane Remodeling. Biophysical Journal, 2009, 97, 3113-3122.	0.2	125
53	Template-directed synthesis of a genetic polymer in a model protocell. Nature, 2008, 454, 122-125.	13.7	618
54	Thermostability of model protocell membranes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13351-13355.	3.3	179

#	Article	IF	Citations
55	Structure and Evolutionary Analysis of a Non-biological ATP-binding Protein. Journal of Molecular Biology, 2007, 371, 501-513.	2.0	18
56	Mineral Surface Directed Membrane Assembly. Origins of Life and Evolution of Biospheres, 2007, 37, 67-82.	0.8	106
57	Ironâ^'Sulfur Cluster Biosynthesis. Molecular Chaperone DnaK Promotes IscU-Bound [2Fe-2S] Cluster Stability and Inhibits Cluster Transfer Activityâ€. Biochemistry, 2005, 44, 4284-4293.	1.2	23
58	Iron-Sulfur Cluster Biosynthesis. Journal of Biological Chemistry, 2004, 279, 10469-10475.	1.6	33
59	Ironâ€"Sulfur Cluster Biosynthesis: Toward an Understanding of Cellular Machinery and Molecular Mechanism. ChemInform, 2004, 35, no.	0.1	0
60	Ironâ^'Sulfur Cluster Biosynthesis: Toward an Understanding of Cellular Machinery and Molecular Mechanismâ€. Accounts of Chemical Research, 2004, 37, 719-725.	7.6	95
61	Electron Transfer from HiPIP to the Photooxidized Tetraheme Cytochrome Subunit of Allochromatium vinosum Reaction Center:  New Insights from Site-Directed Mutagenesis and Computational Studies. Biochemistry, 2004, 43, 437-445.	1.2	10
62	Thermotoga maritima IscU. Structural Characterization and Dynamics of a New Class of Metallochaperone. Journal of Molecular Biology, 2003, 331, 907-924.	2.0	57
63	Iron-Sulfur Cluster Biosynthesis. Journal of Biological Chemistry, 2002, 277, 21397-21404.	1.6	79
64	Crystal Structure and Stability Studies of C77S HiPIP:  A Serine Ligated [4Fe-4S] Cluster. Biochemistry, 2002, 41, 1195-1201.	1.2	38
65	Characterization of an Ironâ^'Sulfur Cluster Assembly Protein (ISU1) from Schizosaccharomyces pombe. Biochemistry, 2002, 41, 5024-5032.	1.2	82
66	Iron-sulfur cluster biosynthesis: characterization of Schizosaccharomyces pombe Isa1. Journal of Biological Inorganic Chemistry, 2002, 7, 526-532.	1.1	70
67	A Mutant Human IscU Protein Contains a Stable [2Feâ^'2S]2+Center of Possible Functional Significance. Journal of the American Chemical Society, 2000, 122, 6805-6806.	6.6	79
68	Imidazole Is a Sensitive Probe of Steric Hindrance in the Distal Pockets of Oxygen-Binding Heme Proteinsâ€. Biochemistry, 1998, 37, 12452-12457.	1.2	43
69	Structure of a biological oxygen sensor: A new mechanism for heme-driven signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15177-15182.	3.3	380