Valentina Cauda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8321441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Future Directions for Ureteral Stent Technology: From Bench to the Market. Advanced Therapeutics, 2022, 5, .	1.6	10
2	In Vitro and Ex Vivo Investigation of the Effects of Polydopamine Nanoparticle Size on Their Antioxidant and Photothermal Properties: Implications for Biomedical Applications. ACS Applied Nano Materials, 2022, 5, 1702-1713.	2.4	26
3	Insight into Sonoluminescence Augmented by ZnO-Functionalized Nanoparticles. ACS Omega, 2022, 7, 6591-6600.	1.6	12
4	External validation of a deep-learning model to predict severe acute kidney injury based on urine output changes in critically ill patients. Journal of Nephrology, 2022, 35, 2047-2056.	0.9	7
5	Nanotechnological engineering of extracellular vesicles for the development of actively targeted hybrid nanodevices. Cell and Bioscience, 2022, 12, 61.	2.1	13
6	Multimodal Therapies against Pancreatic Ductal Adenocarcinoma: A Review on Synergistic Approaches toward Ultimate Nanomedicine Treatments. Advanced Therapeutics, 2022, 5, .	1.6	8
7	Remotely Activated Nanoparticles for Anticancer Therapy. Nano-Micro Letters, 2021, 13, 11.	14.4	34
8	Editorial for Special Issue: ZnO Nanostructures for Tissue Regeneration, Drug-Delivery and Theranostics Applications. Nanomaterials, 2021, 11, 296.	1.9	3
9	Enhancing the preservation of liposomes: The role of cryoprotectants, lipid formulations and freezing approaches. Cryobiology, 2021, 98, 46-56.	0.3	25
10	ZnO Materials as Effective Anodes for the Photoelectrochemical Regeneration of Enzymatically Active NAD+. ACS Applied Materials & amp; Interfaces, 2021, 13, 10719-10727.	4.0	10
11	Synthesis and characterization of ordered mesoporous silicas for the immobilization of formate dehydrogenase (FDH). International Journal of Biological Macromolecules, 2021, 177, 261-270.	3.6	16
12	A deep-learning model to continuously predict severe acute kidney injury based on urine output changes in critically ill patients. Journal of Nephrology, 2021, 34, 1875-1886.	0.9	23
13	Extracellular Vesicles and Their Current Role in Cancer Immunotherapy. Cancers, 2021, 13, 2280.	1.7	20
14	Smart Shockwave Responsive Titania-Based Nanoparticles for Cancer Treatment. Pharmaceutics, 2021, 13, 1423.	2.0	10
15	Biomimetic mesoporous vectors enabling the efficient inhibition of wild-type isocitrate dehydrogenase in multiple myeloma cells. Microporous and Mesoporous Materials, 2021, 325, 111320.	2.2	5
16	Iron-Doped ZnO Nanoparticles as Multifunctional Nanoplatforms for Theranostics. Nanomaterials, 2021, 11, 2628.	1.9	25
17	Ultrasound Triggered ZnOâ€Based Devices for Tunable and Multifaceted Biomedical Applications. Advanced Materials Interfaces, 2021, 8, 2101021.	1.9	6
18	Extracellular Vesicles Tropism: A Comparative Study between Passive Innate Tropism and the Active Engineered Targeting Capability of Lymphocyte-Derived EVs. Membranes, 2021, 11, 886.	1.4	15

#	Article	IF	CITATIONS
19	The investigation of the parameters affecting the ZnO nanoparticle cytotoxicity behaviour: a tutorial review. Biomaterials Science, 2020, 8, 6157-6174.	2.6	33
20	Polydopamine Nanoparticles as an Organic and Biodegradable Multitasking Tool for Neuroprotection and Remote Neuronal Stimulation. ACS Applied Materials & amp; Interfaces, 2020, 12, 35782-35798.	4.0	58
21	Mesoporous Materials for Drug Delivery and Theranostics. Pharmaceutics, 2020, 12, 1108.	2.0	6
22	Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. Applied Sciences (Switzerland), 2020, 10, 5194.	1.3	114
23	EVs and Bioengineering: From Cellular Products to Engineered Nanomachines. International Journal of Molecular Sciences, 2020, 21, 6048.	1.8	52
24	Biodegradable and Drug-Eluting Inorganic Composites Based on Mesoporous Zinc Oxide for Urinary Stent Applications. Materials, 2020, 13, 3821.	1.3	12
25	Biomimetic Amorphous Titania Nanoparticles as Ultrasound Responding Agents to Improve Cavitation and ROS Production for Sonodynamic Therapy. Applied Sciences (Switzerland), 2020, 10, 8479.	1.3	14
26	Biodegradation and Antimicrobial Properties of Zinc Oxide–Polymer Composite Materials for Urinary Stent Applications. Coatings, 2020, 10, 1002.	1.2	13
27	The urgent need for integrated science to fight COVID-19 pandemic and beyond. Journal of Translational Medicine, 2020, 18, 205.	1.8	128
28	Piezo- and Photocatalytic Activity of Ferroelectric ZnO:Sb Thin Films for the Efficient Degradation of Rhodamine-β dye Pollutant. ACS Applied Materials & Interfaces, 2020, 12, 25798-25808.	4.0	65
29	Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics, 2020, 12, 527.	2.0	40
30	Metal–Organic Framework Nanoparticles Induce Pyroptosis in Cells Controlled by the Extracellular pH. Advanced Materials, 2020, 32, e1907267.	11.1	118
31	Facile Chemical Synthesis of Doped ZnO Nanocrystals Exploiting Oleic Acid. Nanomaterials, 2020, 10, 1150.	1.9	15
32	Zinc Oxide Nanocrystals and High-Energy Shock Waves: A New Synergy for the Treatment of Cancer Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 577.	2.0	30
33	Leveraging re-chargeable nanobubbles on amine-functionalized ZnO nanocrystals for sustained ultrasound cavitation towards echographic imaging. Ultrasonics Sonochemistry, 2020, 67, 105132.	3.8	17
34	Biodegradable polymer nanocomposites for tissue engineering: synthetic strategies and related applications. , 2019, , 157-198.		1
35	Zinc oxide nanocrystals as a nanoantibiotic and osteoinductive agent. RSC Advances, 2019, 9, 11312-11321.	1.7	34
36	Improving dispersal of therapeutic nanoparticles in the human body. Nanomedicine, 2019, 14, 797-801.	1.7	31

#	Article	IF	CITATIONS
37	A Microwave-Assisted Synthesis of Zinc Oxide Nanocrystals Finely Tuned for Biological Applications. Nanomaterials, 2019, 9, 212.	1.9	61
38	The Synergistic Effect of Nanocrystals Combined With Ultrasound in the Generation of Reactive Oxygen Species for Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 374.	2.0	25
39	ZnO thick films for NO2 detection: effect of different nanostructures on the sensors' performances. Journal of Materials Science: Materials in Electronics, 2019, 30, 20958-20969.	1.1	5
40	ZnO nanocrystals shuttled by extracellular vesicles as effective Trojan nano-horses against cancer cells. Nanomedicine, 2019, 14, 2815-2833.	1.7	41
41	Engineered Extracellular Vesicles as a Reliable Tool in Cancer Nanomedicine. Cancers, 2019, 11, 1979.	1.7	67
42	Design, Fabrication, and In Vitro Evaluation of Nanoceria-Loaded Nanostructured Lipid Carriers for the Treatment of Neurological Diseases. ACS Biomaterials Science and Engineering, 2019, 5, 670-682.	2.6	25
43	Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Applied Catalysis B: Environmental, 2019, 243, 629-640.	10.8	364
44	Graphene Oxide Finely Tunes the Bioactivity and Drug Delivery of Mesoporous ZnO Scaffolds. ACS Applied Materials & Interfaces, 2019, 11, 449-456.	4.0	31
45	Nanoparticles for hematologic diseases detection and treatment. Hematology & Medical Oncology, 2019, 4, 1000183.	0.1	5
46	Novel contrast agents and increasing tools for radicals generation in low intensity ultrasound based on porous oxides. Proceedings of Meetings on Acoustics, 2019, , .	0.3	0
47	Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chemical Engineering Journal, 2018, 340, 155-172.	6.6	286
48	Porous ZnO/2–Hydroxyethyl Methacrylate Eluting Coatings for Ureteral Stent Applications. Coatings, 2018, 8, 376.	1.2	16
49	Zinc Oxide Nanostructures in Biomedicine. , 2018, , 171-187.		23
50	Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications. Coatings, 2018, 8, 67.	1.2	55
51	Lipid-Coated Zinc Oxide Nanoparticles as Innovative ROS-Generators for Photodynamic Therapy in Cancer Cells. Nanomaterials, 2018, 8, 143.	1.9	99
52	Gentamicin-Releasing Mesoporous ZnO Structures. Materials, 2018, 11, 314.	1.3	26
53	Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability. Analytical and Bioanalytical Chemistry, 2017, 409, 2615-2625.	1.9	12
54	Comparative spectroscopic approach for the dye loading optimization of sheet-like ZnO photoanodes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 337, 192-197.	2.0	5

#	Article	IF	CITATIONS
55	Surface Engineering of Nanostructured ZnO Surfaces. Advanced Materials Interfaces, 2017, 4, 1600758.	1.9	50
56	Exosome-Coated Metal–Organic Framework Nanoparticles: An Efficient Drug Delivery Platform. Chemistry of Materials, 2017, 29, 8042-8046.	3.2	177
57	Enhanced biostability and cellular uptake of zinc oxide nanocrystals shielded with a phospholipid bilayer. Journal of Materials Chemistry B, 2017, 5, 8799-8813.	2.9	75
58	Ureteral doubleâ€J stents performances toward encrustation after longâ€ŧerm indwelling in a dynamic <i>in vitro</i> model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2244-2253.	1.6	21
59	ZnO Nanostructures for Tissue Engineering Applications. Nanomaterials, 2017, 7, 374.	1.9	135
60	A porous nanobranched structure: an effective way to improve piezoelectricity in sputtered ZnO thin films. RSC Advances, 2016, 6, 76996-77004.	1.7	28
61	One-Dimensional ZnO/Gold Junction for Simultaneous and Versatile Multisensing Measurements. Scientific Reports, 2016, 6, 29763.	1.6	79
62	How Micropatterning and Surface Functionalization Affect the Wetting Behavior of ZnO Nanostructured Surfaces. Advanced Materials Interfaces, 2016, 3, 1600110.	1.9	21
63	Aerosol-assisted synthesis of mesoporous aluminosilicate microspheres: the effect of the aluminum precursor. New Journal of Chemistry, 2016, 40, 4420-4427.	1.4	7
64	An electronic platform for real-time detection of bovine serum albumin by means of amine-functionalized zinc oxide microwires. RSC Advances, 2016, 6, 891-897.	1.7	23
65	Nanobranched ZnO Structure: pâ€īype Doping Induces Piezoelectric Voltage Generation and Ferroelectric–Photovoltaic Effect. Advanced Materials, 2015, 27, 4218-4223.	11.1	65
66	Interface of a single ZnO-nanowire assembled onto custom-fabricated nanogap device for UV sensing applications. , 2015, , .		1
67	Comparison of photocatalytic and transport properties of TiO ₂ and ZnO nanostructures for solar-driven water splitting. Physical Chemistry Chemical Physics, 2015, 17, 7775-7786.	1.3	234
68	Electrophoretic deposition of mesoporous bioactive glass on glass–ceramic foam scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2015, 26, 5346.	1.7	49
69	Nanostructured piezoelectric polymers. Journal of Applied Polymer Science, 2015, 132, .	1.3	53
70	A Low-Power 0.13- <inline-formula> <tex-math notation="LaTeX">\$mu ext{m}\$ </tex-math></inline-formula> CMOS IC for ZnO-Nanowire Assembly and Nanowire-Based UV Sensor Interface. IEEE Sensors Journal, 2015, 15, 4203-4212.	2.4	10
71	Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane. Nano Energy, 2015, 13, 474-481.	8.2	86
72	Ultraviolet mem-sensors: flexible anisotropic composites featuring giant photocurrent enhancement. Nano Research, 2015, 8, 1956-1963.	5.8	26

#	Article	IF	CITATIONS
73	Evaluation of the piezoelectric properties and voltage generation of flexible zinc oxide thin films. Nanotechnology, 2015, 26, 215704.	1.3	59
74	Leveraging ZnO morphologies in piezoelectric composites for mechanical energy harvesting. Nano Energy, 2015, 18, 212-221.	8.2	39
75	Surface area enhancement by mesoporous silica deposition on microcantilever sensors for small molecule detection. Journal of Materials Chemistry C, 2015, 3, 12507-12513.	2.7	16
76	Real-Time Pedobarography Analysis by Piezoresistive Wearable Insole. Sensor Letters, 2014, 12, 1427-1432.	0.4	1
77	Wetting Behavior of Hierarchical Oxide Nanostructures: TiO2Nanotubes from Anodic Oxidation Decorated with ZnO Nanostructures. Journal of the Electrochemical Society, 2014, 161, D484-D488.	1.3	29
78	Stretchable and Wearable Piezoresistive Insole for Continuous Pressure Monitoring. Key Engineering Materials, 2014, 605, 474-477.	0.4	5
79	Nanostructured ZnO Materials: Synthesis, Properties and Applications. , 2014, , 137-177.		10
80	Properties of ZnO nanorods grown by hydrothermal synthesis on conductive layers. Crystal Research and Technology, 2014, 49, 599-605.	0.6	16
81	Ultralong and Mesoporous ZnO and γ-Al2O3 Oriented NanowiresÂObtained by Template-assisted Hydrothermal Approach. Journal of Materials Science and Technology, 2014, 30, 1167-1173.	5.6	17
82	Nanosized Gold and Silver Spherical, Spiky, and Multi-branched Particles. , 2014, , 179-212.		3
83	Flexible Tactile Sensing Based on Piezoresistive Composites: A Review. Sensors, 2014, 14, 5296-5332.	2.1	346
84	Multi-functional energy conversion and storage electrodes using flower-like Zinc oxide nanostructures. Energy, 2014, 65, 639-646.	4.5	87
85	Fast and low-cost synthesis of 1D ZnO–TiO2 core–shell nanoarrays: Characterization and enhanced photo-electrochemical performance for water splitting. Journal of Alloys and Compounds, 2014, 615, S530-S537.	2.8	67
86	pH-triggered conduction of amine-functionalized single ZnO wire integrated on a customized nanogap electronic platform. Nanoscale Research Letters, 2014, 9, 53.	3.1	21
87	Comprehensive study of the templating effect on the ZnO nanostructure formation within porous hard membranes. New Journal of Chemistry, 2014, 38, 2058.	1.4	28
88	Optimization of 1D ZnO@TiO ₂ Core–Shell Nanostructures for Enhanced Photoelectrochemical Water Splitting under Solar Light Illumination. ACS Applied Materials & Interfaces, 2014, 6, 12153-12167.	4.0	190
89	Shape-Controlled Synthesis of Silver Nature-Like Spiky Particles for Piezoresistive Sensor Applications. European Journal of Inorganic Chemistry, 2014, 2014, 2711-2719.	1.0	1
90	Piezoresistive flexible composite for robotic tactile applications. Sensors and Actuators A: Physical, 2014, 208, 1-9.	2.0	95

#	Article	IF	CITATIONS
91	Streamlining of commercial Berl saddles: A new material to improve the performance of microbial fuel cells. Energy, 2014, 71, 615-623.	4.5	33
92	Effect of the fabrication method on the functional properties of BaTiO3: PVDF nanocomposites. Journal of Materials Science, 2013, 48, 6943-6951.	1.7	34
93	Nanoconfinement: an Effective Way to Enhance PVDF Piezoelectric Properties. ACS Applied Materials & Interfaces, 2013, 5, 6430-6437.	4.0	150
94	Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis. Applied Physics A: Materials Science and Processing, 2013, 113, 623-632.	1.1	85
95	A Chemometric Approach for the Sensitization Procedure of ZnO Flowerlike Microstructures for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 11288-11295.	4.0	78
96	A low-power Read-Out Circuit and low-cost assembly of nanosensors onto a 0.13 μm CMOS Micro-for-Nano chip. , 2013, , .		5
97	Bis-Ferrocene Molecular QCA Wire: Ab Initio Simulations of Fabrication Driven Fault Tolerance. IEEE Nanotechnology Magazine, 2013, 12, 498-507.	1.1	67
98	Different Scale Confinements of PVDF-TrFE as Functional Material of Piezoelectric Devices. IEEE Sensors Journal, 2013, 13, 2237-2244.	2.4	26
99	Lengthâ€Dependent Charge Generation from Vertical Arrays of Highâ€Aspectâ€Ratio ZnO Nanowires. Chemistry - A European Journal, 2013, 19, 14665-14674.	1.7	70
100	Wearable and flexible pedobarographic insole for continuous pressure monitoring. , 2013, , .		11
101	Functionalized single ZnO-metal junction as a pH sensor. , 2013, , .		3
102	Wettability Control on ZnO Nanowires Driven by Seed Layer Properties. European Journal of Inorganic Chemistry, 2013, 2013, 2520-2527.	1.0	53
103	Different scale confinements of PVDF-TrFE as functional material of piezoelectric sensor devices. , 2012, , .		1
104	A nanogap–array platform for testing the optically modulated conduction of gold–octithiophene–gold junctions for molecular optoelectronics. RSC Advances, 2012, 2, 10985.	1.7	14
105	Confinement in Oriented Mesopores Induces Piezoelectric Behavior of Polymeric Nanowires. Chemistry of Materials, 2012, 24, 4215-4221.	3.2	58
106	Evaluation of different conductive nanostructured particles as filler in smart piezoresistive composites. Nanoscale Research Letters, 2012, 7, 327.	3.1	27
107	Direct Visualization of Dye and Oligonucleotide Diffusion in Silica Filaments with Collinear Mesopores. Nano Letters, 2012, 12, 1354-1361.	4.5	23

108 Polyurethane in Urological Practice. , 2012, , .

#	Article	IF	CITATIONS
109	Synthesis and Characterization of Gold Nanostars as Filler of Tunneling Conductive Polymer Composites. European Journal of Inorganic Chemistry, 2012, 2012, 2669-2673.	1.0	40
110	Cascaded Photoinduced Drug Delivery to Cells from Multifunctional Core–Shell Mesoporous Silica. Advanced Healthcare Materials, 2012, 1, 316-320.	3.9	41
111	Photoâ€induced Drug Delivery: Cascaded Photoinduced Drug Delivery to Cells from Multifunctional Core–Shell Mesoporous Silica (Adv. Healthcare Mater. 3/2012). Advanced Healthcare Materials, 2012, 1, 360-360.	3.9	0
112	Discrete tomography of demanding samples based on a modified SIRT algorithm. Ultramicroscopy, 2012, 115, 41-49.	0.8	30
113	Heparinâ€Coated Colloidal Mesoporous Silica Nanoparticles Efficiently Bind to Antithrombin as an Anticoagulant Drugâ€Delivery System. Chemistry - A European Journal, 2012, 18, 428-432.	1.7	48
114	All-inorganic core–shell silica–titania mesoporous colloidal nanoparticles showing orthogonal functionality. Journal of Materials Chemistry, 2011, 21, 13817.	6.7	4
115	"Liquid-Phase Calcination―of Colloidal Mesoporous Silica Nanoparticles in High-Boiling Solvents. Journal of the American Chemical Society, 2011, 133, 6484-6486.	6.6	32
116	Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous and Mesoporous Materials, 2010, 132, 60-71.	2.2	213
117	Ni-Cr-Co alloy ureteral stent: Scanning electron microscopy and elemental analysis characterization after long-term indwelling. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 94, n/a-n/a.	1.6	7
118	Impact of different PECylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. Journal of Materials Chemistry, 2010, 20, 8693.	6.7	223
119	Colchicine-Loaded Lipid Bilayer-Coated 50 nm Mesoporous Nanoparticles Efficiently Induce Microtubule Depolymerization upon Cell Uptake. Nano Letters, 2010, 10, 2484-2492.	4.5	151
120	Role of Endosomal Escape for Disulfide-Based Drug Delivery from Colloidal Mesoporous Silica Evaluated by Live-Cell Imaging. Nano Letters, 2010, 10, 3684-3691.	4.5	155
121	Controlling the delivery kinetics from colloidal mesoporous silica nanoparticles with pH-sensitive gates. Journal of Materials Chemistry, 2010, 20, 4305.	6.7	70
122	Tuning drug uptake and release rates through different morphologies and pore diameters of confined mesoporous silica. Microporous and Mesoporous Materials, 2009, 118, 435-442.	2.2	84
123	Multiple Coreâ^'Shell Functionalized Colloidal Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 2009, 131, 11361-11370.	6.6	226
124	Coated ureteral stents. , 2009, , 134-156.		1
125	Synthesis and characterization of MCM-41 spheres inside bioactive glass–ceramic scaffold. Chemical Engineering Journal, 2008, 137, 54-61.	6.6	61
126	SBA-15 ordered mesoporous silica inside a bioactive glass–ceramic scaffold for local drug delivery. Journal of Materials Science: Materials in Medicine, 2008, 19, 3303-3310.	1.7	40

#	Article	IF	CITATIONS
127	Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization. Chemical Engineering Journal, 2008, 137, 30-37.	6.6	381
128	Large antibiotic molecule diffusion in confined mesoporous silica with controlled morphology. Journal of Materials Chemistry, 2008, 18, 5888.	6.7	52
129	Heparin Coating on Ureteral Double J Stents Prevents Encrustations: An <i>in Vivo</i> Case Study. Journal of Endourology, 2008, 22, 465-472.	1.1	96
130	Incorporation of ordered mesoporous silica inside a bioactive porous scaffold in view of controlled drug release. Studies in Surface Science and Catalysis, 2005, 158, 2027-2032.	1.5	3
131	Development of Hybrid Piezoelectric Materials for Tactile Sensing. Key Engineering Materials, 0, 605, 263-266.	0.4	3
132	Nanogaps and biomolecules. , 0, , 11-33.		0
133	Preparation of bio-functional textiles by surface functionalization of cellulose fabrics with caffeine loaded nanoparticles IOP Conference Series: Materials Science and Engineering, 0, 460, 012044.	0.3	9