Hyunho Kim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8321345/hyunho-kim-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24	1,454	12	25
papers	citations	h-index	g-index
25	2,023 ext. citations	16.7	5.47
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
24	Growth of Two-Dimensional Materials at the Wafer Scale. <i>Advanced Materials</i> , 2021 , e2108258	24	9
23	Muscle Fatigue Sensor Based on Ti C T MXene Hydrogel Small Methods, 2021, 5, e2100819	12.8	5
22	High-Yield Ti C T MXene-MoS Integrated Circuits. <i>Advanced Materials</i> , 2021 , e2107370	24	4
21	Dopant-Assisted Matrix Stabilization Enables Thermoelectric Performance Enhancement in n-Type Quantum Dot Films. <i>ACS Applied Materials & Dopanter States</i> , 2021, 13, 18999-19007	9.5	0
20	Generation of multi-dimensional defect structures for synergetic engineering of hole and phonon transport: enhanced thermoelectric performance in Sb and Cu co-doped GeTe. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 2782-2787	6.8	4
19	All-Solution-Processed Quantum Dot Electrical Double-Layer Transistors Enhanced by Surface Charges of TiCT MXene Contacts. <i>ACS Nano</i> , 2021 , 15, 5221-5229	16.7	12
18	Photothermoelectric Response of TiCT MXene Confined Ion Channels. <i>ACS Nano</i> , 2020 , 14, 9042-9049	16.7	25
17	MXene Printing and Patterned Coating for Device Applications. <i>Advanced Materials</i> , 2020 , 32, e190848	624	116
16	Ultrasound-Driven Two-Dimensional TiCT MXene Hydrogel Generator. ACS Nano, 2020, 14, 3199-3207	16.7	43
15	MXetronics: MXene-Enabled Electronic and Photonic Devices 2020 , 2, 55-70		78
14	Titanium Carbide MXene Nucleation Layer for Epitaxial Growth of High-Quality GaN Nanowires on Amorphous Substrates. <i>ACS Nano</i> , 2020 , 14, 2202-2211	16.7	5
13	Iontronics Using VCT MXene-Derived Metal-Organic Framework Solid Electrolytes. <i>ACS Nano</i> , 2020 , 14, 9840-9847	16.7	10
12	Highly Passivated n-Type Colloidal Quantum Dots for Solution-Processed Thermoelectric Generators with Large Output Voltage. <i>Advanced Energy Materials</i> , 2019 , 9, 1901244	21.8	9
11	Solar Cells: MXene-Contacted Silicon Solar Cells with 11.5% Efficiency (Adv. Energy Mater. 22/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970083	21.8	3
10	MXene-Contacted Silicon Solar Cells with 11.5% Efficiency. <i>Advanced Energy Materials</i> , 2019 , 9, 190018	021.8	117
9	MXetronics: Electronic and photonic applications of MXenes. <i>Nano Energy</i> , 2019 , 60, 179-197	17.1	128
8	Highly Stretchable and Air-Stable PEDOT:PSS/Ionic Liquid Composites for Efficient Organic Thermoelectrics. <i>Chemistry of Materials</i> , 2019 , 31, 3519-3526	9.6	51

LIST OF PUBLICATIONS

7	Heteroatom-Mediated Interactions between Ruthenium Single Atoms and an MXene Support for Efficient Hydrogen Evolution. <i>Advanced Materials</i> , 2019 , 31, e1903841	24	197
6	Low-Temperature-Processed Colloidal Quantum Dots as Building Blocks for Thermoelectrics. <i>Advanced Energy Materials</i> , 2019 , 9, 1803049	21.8	11
5	Oxide Thin-Film Electronics using All-MXene Electrical Contacts. Advanced Materials, 2018, 30, e170665	6624	113
4	Thin-Film Electronics: Oxide Thin-Film Electronics using All-MXene Electrical Contacts (Adv. Mater. 15/2018). <i>Advanced Materials</i> , 2018 , 30, 1870103	24	
3	MXenes stretch hydrogel sensor performance to new limits. <i>Science Advances</i> , 2018 , 4, eaat0098	14.3	334
2	Oxidant-Dependent Thermoelectric Properties of Undoped ZnO Films by Atomic Layer Deposition. <i>Chemistry of Materials</i> , 2017 , 29, 2794-2802	9.6	17
1	Thermoelectric Properties of Two-Dimensional Molybdenum-Based MXenes. <i>Chemistry of Materials</i> , 2017 , 29, 6472-6479	9.6	163