Joëlle Rault-Berthelot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/832126/publications.pdf

Version: 2024-02-01

84 papers

3,592 citations

76326 40 h-index 57 g-index

87 all docs

87 docs citations

87 times ranked

2180 citing authors

#	Article	lF	CITATIONS
1	Dispirofluorene–Indenofluorene Derivatives as New Building Blocks for Blue Organic Electroluminescent Devices and Electroactive Polymers. Chemistry - A European Journal, 2007, 13, 10055-10069.	3.3	131
2	<i>orthoâ€, metaâ€</i> , and <i>para</i> â€Dihydroindenofluorene Derivatives as Host Materials for Phosphorescent OLEDs. Angewandte Chemie - International Edition, 2015, 54, 1176-1180.	13.8	129
3	Electrochemistry: A technique to form, to modify and to characterize organic conducting polymers. Progress in Solid State Chemistry, 1991, 21, 1-48.	7.2	110
4	Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design. Journal of Materials Chemistry, 2012, 22, 7149.	6.7	103
5	C1â€Linked Spirobifluorene Dimers: Pure Hydrocarbon Hosts for Highâ€Performance Blue Phosphorescent OLEDs. Angewandte Chemie - International Edition, 2019, 58, 3848-3853.	13.8	95
6	Dependence of the Properties of Dihydroindenofluorene Derivatives on Positional Isomerism: Influence of the Ring Bridging. Angewandte Chemie - International Edition, 2013, 52, 14147-14151.	13.8	90
7	Structure–property relationship of 4-substituted-spirobifluorenes as hosts for phosphorescent organic light emitting diodes: an overview. Journal of Materials Chemistry C, 2017, 5, 3869-3897.	5.5	89
8	Spirobifluorene Regioisomerism: A Structure–Property Relationship Study. Chemistry - A European Journal, 2017, 23, 7719-7727.	3. 3	85
9	New generations of spirobifluorene regioisomers for organic electronics: tuning electronic properties with the substitution pattern. Chemical Communications, 2019, 55, 14238-14254.	4.1	83
10	Synthesis and Properties of a Blue Bipolar Indenofluorene Emitter Based on a D-Ï€-A Design. Organic Letters, 2011, 13, 4418-4421.	4.6	77
11	Blue Singleâ€Layer Organic Lightâ€Emitting Diodes Using Fluorescent Materials: A Molecular Design View Point. Advanced Functional Materials, 2020, 30, 1910040.	14.9	77
12	DiSpiroXanthene-IndenoFluorene: A New Blue Emitter for Nondoped Organic Light Emitting Diode Applications. Organic Letters, 2010, 12, 452-455.	4.6	76
13	9,9′-Spirobifluorene and 4-phenyl-9,9′-spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and blue PhOLEDs. Journal of Materials Chemistry C, 2014, 2, 4156-4166.	5 . 5	7 5
14	New 3Ï€â€⊋Spiro Ladderâ€Type Phenylene Materials: Synthesis, Physicochemical Properties and Applications in OLEDs. Chemistry - A European Journal, 2008, 14, 11328-11342.	3.3	73
15	Spiro-configured phenyl acridine thioxanthene dioxide as a host for efficient PhOLEDs. Chemical Communications, 2015, 51, 1313-1315.	4.1	69
16	Incorporation of Spiroxanthene Units in Blueâ€Emitting Oligophenylene Frameworks: A New Molecular Design for OLED Applications. Chemistry - A European Journal, 2011, 17, 12631-12645.	3.3	65
17	Violetâ€toâ€Blue Tunable Emission of Arylâ€Substituted Dispirofluorene–Indenofluorene Isomers by Conformationallyâ€Controllable Intramolecular Excimer Formation. Chemistry - A European Journal, 2011, 17, 10272-10287.	3.3	65
18	Dispirofluorene-indenofluorene (DSFIF):  Synthesis, Electrochemical, and Optical Properties of a Promising New Family of Luminescent Materials. Organic Letters, 2006, 8, 257-260.	4.6	59

#	Article	IF	CITATIONS
19	4-Pyridyl-9,9′-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs. Journal of Physical Chemistry C, 2015, 119, 5790-5805.	3.1	59
20	Dihydroindenofluorene Positional Isomers. Accounts of Chemical Research, 2018, 51, 1818-1830.	15.6	59
21	Evolution of pure hydrocarbon hosts: simpler structure, higher performance and universal application in RGB phosphorescent organic light-emitting diodes. Chemical Science, 2020, 11, 4887-4894.	7.4	58
22	Comparative Study of the Oxidation of Fluorene and 9,9-Disubstituted Fluorenes and Their Related 2,7â€~-Dimers and Trimer. Chemistry of Materials, 2005, 17, 2003-2012.	6.7	57
23	Spirobifluorene-2,7-dicarbazole-4′-phosphine Oxide as Host for High-Performance Single-Layer Green Phosphorescent OLED Devices. Organic Letters, 2015, 17, 4682-4685.	4.6	56
24	Properties modulation of organic semi-conductors based on a donor-spiro-acceptor (D-spiro-A) molecular design: new host materials for efficient sky-blue PhOLEDs. Journal of Materials Chemistry C, 2015, 3, 9701-9714.	5.5	55
25	Electroactive films of poly(tetraphenylporphyrins) with reduced bandgap. Journal of Electroanalytical Chemistry, 2006, 597, 19-27.	3.8	53
26	Donor/Acceptor Dihydroindeno[1,2â€ <i>a</i>]fluorene and Dihydroindeno[2,1â€ <i>b</i>]fluorene: Towards New Families of Organic Semiconductors. Chemistry - A European Journal, 2015, 21, 9426-9439.	3.3	53
27	New Dispiro Compounds:  Synthesis and Properties. Organic Letters, 2008, 10, 373-376.	4.6	52
28	(2,1â€ <i>a</i>)â€Indenofluorene Derivatives: Syntheses, Xâ€Iay Structures, Optical and Electrochemical Properties. Chemistry - A European Journal, 2010, 16, 13646-13658.	3.3	52
29	Blue Emitting 3 π–2 Spiro Terfluorene–Indenofluorene Isomers: A Structure–Properties Relationsh Study. Chemistry - A European Journal, 2011, 17, 14031-14046.	nip 3.3	51
30	Electron-Rich 4-Substituted Spirobifluorenes: Toward a New Family of High Triplet Energy Host Materials for High-Efficiency Green and Sky Blue Phosphorescent OLEDs. ACS Applied Materials & Amp; Interfaces, 2017, 9, 6194-6206.	8.0	51
31	Designing Host Materials for the Emissive Layer of Singleâ€Layer Phosphorescent Organic Lightâ€Emitting Diodes: Toward Simplified Organic Devices. Advanced Functional Materials, 2021, 31, 2010547.	14.9	51
32	Tuning the Optical Properties of Aryl-Substituted Dispirofluorene-Indenofluorene Isomers through Intramolecular Excimer Formation. Organic Letters, 2009, 11, 4794-4797.	4.6	50
33	Modulation of the Physicochemical Properties of Donor–Spiro–Acceptor Derivatives through Donor Unit Planarisation: Phenylacridine versus Indoloacridine—New Hosts for Green and Blue Phosphorescent Organic Lightâ€Emitting Diodes (PhOLEDs). Chemistry - A European Journal, 2016, 22, 10136-10149.	3.3	49
34	Organic Cross-Linked Electropolymers as Supported Oxidation Catalysts:Â Poly((tetrakis(9,9â€~-spirobifluorenyl)porphyrin)manganese) Films. Inorganic Chemistry, 2004, 43, 5086-5095.	4.0	48
35	A robust pure hydrocarbon derivative based on the (2,1-b)-indenofluorenyl core with high triplet energy level. Chemical Communications, 2011, 47, 11703.	4.1	48
36	The structure–property relationship study of electron-deficient dihydroindeno[2,1-b]fluorene derivatives for n-type organic field effect transistors. Journal of Materials Chemistry C, 2015, 3, 5742-5753.	5.5	46

#	Article	IF	Citations
37	9 <i>H</i> àâ€Quinolino[3,2,1â€ <i>k</i>]phenothiazine: A New Electronâ€Rich Fragment for Organic Electronics. Chemistry - A European Journal, 2016, 22, 17930-17935.	3.3	46
38	Anodic oxidation and physicochemical properties of various porphyrin-fluorenes or -spirobifluorenes: Synthesis of new polymers for heterogeneous catalytic reactions. Journal of Electroanalytical Chemistry, 2005, 583, 92-103.	3.8	44
39	Modulation of the Electronic Properties of 3Ï€-2spiro Compounds Derived from Bridged Oligophenylenes: A Structure–Property Relationship. Journal of Organic Chemistry, 2013, 78, 886-898.	3.2	43
40	2-Substituted vs 4-substituted-9,9′-spirobifluorene host materials for green and blue phosphorescent OLEDs: a structure–property relationship study. Tetrahedron, 2014, 70, 6337-6351.	1.9	43
41	Spirophenylacridineâ€2,7â€(diphenylphosphineoxide)â€fluorene: A Bipolar Host for Highâ€Efficiency Singleâ€Layer Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 1901225.	7.3	41
42	1-Carbazolyl Spirobifluorene: Synthesis, Structural, Electrochemical, and Photophysical Properties. Journal of Physical Chemistry C, 2019, 123, 19094-19104.	3.1	40
43	Encumbered DiSpiro[Fluorene–IndenoFluorene]: Mechanistic Insights. Chemistry - A European Journal, 2009, 15, 13304-13307.	3.3	39
44	Universal host materials for red, green and blue high-efficiency single-layer phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 16354-16367.	5.5	39
45	Thioxanthene and dioxothioxanthene dihydroindeno[2,1-b]fluorenes: synthesis, properties and applications in green and sky blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2016, 4, 1692-1703.	5.5	38
46	Asymmetric heterogeneous carbene transfer catalyzed by optically active ruthenium spirobifluorenylporphyrin polymers. Tetrahedron: Asymmetry, 2005, 16, 1463-1472.	1.8	37
47	Electron-Deficient Dihydroindaceno-Dithiophene Regioisomers for n-Type Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8219-8232.	8.0	37
48	Anodic oxidation of 9,9′-spirobifluorene in CH2Cl2+0.2 M Bu4NBF4. Electrochemical behaviour of the derived oxidation product. Synthetic Metals, 1998, 97, 211-215.	3.9	35
49	Syntheses of manganese and iron tetraspirobifluorene porphyrins as new catalysts for oxidation of alkenes by hydrogen peroxide and iodosylbenzene. Tetrahedron Letters, 2003, 44, 1759-1761.	1.4	34
50	[4]Cycloâ€ <i>N</i> â€ethylâ€2,7â€carbazole: Synthesis, Structural, Electronic and Charge Transport Properties. Chemistry - A European Journal, 2019, 25, 7740-7748.	3.3	32
51	[4]Cyclofluorene: Unexpected Influence of Alkyl Chain Length. ChemPlusChem, 2018, 83, 874-880.	2.8	28
52	Pure Hydrocarbons: An Efficient Molecular Design Strategy for the Next Generation of Host Materials for Phosphorescent Organic Light-Emitting Diodes. Accounts of Materials Research, 2022, 3, 379-390.	11.7	26
53	An electron deficient dicyanovinylene-ladder-type pentaphenylene derivative for n-type organic field effect transistors. Journal of Materials Chemistry C, 2014, 2, 3292-3302.	5.5	25
54	Pure Hydrocarbon Materials as Highly Efficient Host for White Phosphorescent Organic Lightâ€Emitting Diodes: A New Molecular Design Approach. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25

#	Article	IF	Citations
55	Influence of the gate bias stress on the stability of n-type organic field-effect transistors based on dicyanovinylene–dihydroindenofluorene semiconductors. Materials Chemistry Frontiers, 2018, 2, 1631-1641.	5.9	23
56	C1â€Linked Spirobifluorene Dimers: Pure Hydrocarbon Hosts for Highâ€Performance Blue Phosphorescent OLEDs. Angewandte Chemie, 2019, 131, 3888-3893.	2.0	22
57	[<i>n</i>]â€Cycloâ€9,9â€dibutylâ€2,7â€fluorene (<i>n</i> =4, 5): Nanoring Size Influence in Carbonâ€Bridged Cycloâ€ <i>para</i> êphenylenes. Angewandte Chemie - International Edition, 2020, 59, 11066-11072.	13.8	22
58	Anodic oxidation of indenofluorene. Electrodeposition of electroactive poly(indenofluorene). New Journal of Chemistry, 2008, 32, 1259.	2.8	20
59	Anodic behaviour of mono- and bisdithiafulvenyl-9,9′-spirobifluorene: insertion of vinylogous TTF into the spirobifluorenyle framework. Journal of Electroanalytical Chemistry, 2002, 530, 33-39.	3.8	19
60	[4]Cyclo- <i>N</i> -alkyl-2,7-carbazoles: Influence of the Alkyl Chain Length on the Structural, Electronic, and Charge Transport Properties. Journal of the American Chemical Society, 2021, 143, 8804-8820.	13.7	19
61	Design and electropolymerization of a new optically active iron tetraspirobifluorenyl porphyrin. Synthetic Metals, 2008, 158, 796-801.	3.9	18
62	Spirobifluorene Dimers: Understanding How The Molecular Assemblies Drive The Electronic Properties. Advanced Functional Materials, 2021, 31, 2104980.	14.9	18
63	Anodic polymerization of N-(9-fluorenylmethoxycarbonyl)amino acids towards chiral conducting polymers. Electrochimica Acta, 1999, 44, 3409-3419.	5.2	17
64	Incorporation of spirobifluorene regioisomers in electron-donating molecular systems for organic solar cells. RSC Advances, 2016, 6, 25952-25959.	3.6	17
65	Modulating the Physical and Electronic Properties over Positional Isomerism: The Dispirofluorene–Dihydroindacenodithiophene (DSF″DT) Family. Chemistry - A European Journal, 2017, 23, 17290-17303.	3.3	17
66	Linear and Third-Order Nonlinear Optical Properties of Fe(η ⁵ -C ₅ Me ₅)(κ ² -dppe)- and <i>trans</i> -Ru(κ ² -dppe) ₂ -Alkynyl Complexes Containing 2-Fluorenyl End Groups. Organometallics, 2018, 37, 2245-2262.	2.3	17
67	Are pure hydrocarbons the future of host materials for blue phosphorescent organic light-emitting diodes?. Materials Chemistry Frontiers, 2022, 6, 1246-1252.	5.9	15
68	<i>N</i> -Cyanoimine as an electron-withdrawing functional group for organic semiconductors: example of dihydroindacenodithiophene positional isomers. Journal of Materials Chemistry C, 2018, 6, 13197-13210.	5.5	14
69	<i>Spiro</i> -configured dibenzosuberene compounds as deep-blue emitters for organic light-emitting diodes with a CIE <i>y</i> of 0.04. Materials Chemistry Frontiers, 2022, 6, 1803-1813.	5.9	14
70	New electrochemically synthesized mixed polymers with very high electrochemical stability. Advanced Materials for Optics and Electronics, 2000, 10, 267-272.	0.4	13
71	Photoactive Boron–Nitrogen–Carbon Hybrids: From Azo-borazines to Polymeric Materials. Journal of Organic Chemistry, 2019, 84, 9101-9116.	3.2	13
72	Synthesis and electrochemistry of a novel polyfluorenylidene containing ferrocene units. Electrochemistry Communications, 2001, 3, 91-96.	4.7	12

#	Article	IF	CITATIONS
73	Direct Electron Transfer of Hemoglobin and Myoglobin at the Bare Glassy Carbon Electrode in an Aqueous BMI.BF ₄ Ionicâ€Liquid Mixture. ChemPhysChem, 2011, 12, 411-418.	2.1	10
74	2,5-Thiophene substituted spirobisiloles – synthesis, characterization, electrochemical properties and performance in bulk heterojunction solar cells. New Journal of Chemistry, 2013, 37, 464-473.	2.8	10
75	Experimental and theoretical insights into the sequential oxidations of 3Ï€-2spiro molecules derived from oligophenylenes: A comparative study of 1,2-b-DiSpiroFluorene-IndenoFluorene versus 1,2-b-DiSpiroFluorene(tert-butyl)4-IndenoFluorene. Electrochimica Acta, 2013, 110, 735-740.	5.2	9
76	A Dihydrodinaphthoheptacene. Journal of Organic Chemistry, 2018, 83, 1891-1897.	3.2	9
77	Quinolinophenothiazine as an electron rich fragment for high efficiency RGB single-layer phosphorescent organic light-emitting diodes. Materials Chemistry Frontiers, 2021, 5, 8066-8077.	5.9	9
78	Anodic oxidation of 2-aminofluorene in CH 2 Cl 2 + 0.2 M Bu 4 NBF 4: electrochemical behaviour of the derived oxidation products. Journal of Solid State Electrochemistry, 1999, 3, 293-298.	2.5	8
79	[<i>n</i>]â€Cycloâ€9,9â€dibutylâ€2,7â€fluorene (<i>n</i> =4, 5): Nanoring Size Influence in Carbonâ€Bridged Cycloâ€ <i>para</i> àêphenylenes. Angewandte Chemie, 2020, 132, 11159-11165.	2.0	8
80	A–π–A, D–π–D and D–π–A blue emitting fluorophores based on dispiro[fluorene-9,6′-indeno[1,2- <i>b</i>) fluorene-12′,9′′-fluorene]. Materials Advances, 2021, 2, 127	1 ⁵ 1 ⁴ 283.	8
81	Cyclization of Terphenylâ€Bisfluorenols: A Mechanistic Study of the Regioselectvity. Chemistry - A European Journal, 2019, 25, 10689-10697.	3.3	6
82	Anodic oxidation of various arylene–cyanovinylenes made from alternating mono- or dimethoxybenzene and thienyl or phenyl units. Journal of Electroanalytical Chemistry, 2000, 486, 40-47.	3.8	5
83	Dispiroacridine-indacenobisthiophene positional isomers: impact of the bridge on the physicochemical properties. Materials Chemistry Frontiers, 2022, 6, 225-236.	5.9	2
84	Spirobifluorenyl-Porphyrins and their Derived Polymers for Homogeneous or Heterogeneous Catalysis., 2016,, 345-393.		0