Keiko Mizuno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/832086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Re-biopsy status among non-small cell lung cancer patients in Japan: A retrospective study. Lung Cancer, 2016, 101, 1-8.	0.9	118
2	Dual-strand tumor-suppressor <i>microRNA-145</i> (<i>miR-145-5p</i> and <i>miR-145-3p</i>) coordinately targeted <i>MTDH</i> in lung squamous cell carcinoma. Oncotarget, 2016, 7, 72084-72098.	0.8	79
3	MicroRNAs in non-small cell lung cancer and idiopathic pulmonary fibrosis. Journal of Human Genetics, 2017, 62, 57-65.	1.1	70
4	The microRNA expression signature of small cell lung cancer: tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes. Journal of Human Genetics, 2017, 62, 671-678.	1.1	63
5	Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C. Journal of Human Genetics, 2015, 60, 53-61.	1.1	61
6	Real-world effectiveness and safety of nivolumab in patients with non-small cell lung cancer: A multicenter retrospective observational study in Japan. Lung Cancer, 2020, 140, 8-18.	0.9	56
7	Regulation of LOXL2 and SERPINH1 by antitumor microRNA-29a in lung cancer with idiopathic pulmonary fibrosis. Journal of Human Genetics, 2016, 61, 985-993.	1.1	55
8	Tumor-suppressive microRNA-29 family inhibits cancer cell migration and invasion directly targeting LOXL2 in lung squamous cell carcinoma. International Journal of Oncology, 2016, 48, 450-460.	1.4	55
9	Dual-receptor (EGFR and c-MET) inhibition by tumor-suppressive miR-1 and miR-206 in head and neck squamous cell carcinoma. Journal of Human Genetics, 2017, 62, 113-121.	1.1	52
10	Regulation of TPD52 by antitumor microRNA-218 suppresses cancer cell migration and invasion in lung squamous cell carcinoma. International Journal of Oncology, 2016, 49, 1870-1880.	1.4	49
11	Involvement of Dual Strands of miR-143 (miR-143-5p and miR-143-3p) and Their Target Oncogenes in the Molecular Pathogenesis of Lung Adenocarcinoma. International Journal of Molecular Sciences, 2019, 20, 4482.	1.8	48
12	Tumor-suppressive microRNA-206 as a dual inhibitor of MET and EGFR oncogenic signaling in lung squamous cell carcinoma. International Journal of Oncology, 2015, 46, 1039-1050.	1.4	40
13	Molecular Pathogenesis of Gene Regulation by the miR-150 Duplex: miR-150-3p Regulates TNS4 in Lung Adenocarcinoma. Cancers, 2019, 11, 601.	1.7	39
14	Dual strands of the miR-145 duplex (miR-145-5p and miR-145-3p) regulate oncogenes in lung adenocarcinoma pathogenesis. Journal of Human Genetics, 2018, 63, 1015-1028.	1.1	30
15	Involvement of dualâ€strand of the <i>miRâ€144</i> duplex and their targets in the pathogenesis of lung squamous cell carcinoma. Cancer Science, 2019, 110, 420-432.	1.7	29
16	Regulation of KIF2A by Antitumor miR-451a Inhibits Cancer Cell Aggressiveness Features in Lung Squamous Cell Carcinoma. Cancers, 2019, 11, 258.	1.7	24
17	Downregulation of matrix metalloproteinase 14 by the antitumor miRNA, miR-150-5p, inhibits the aggressiveness of lung squamous cell carcinoma cells. International Journal of Oncology, 2018, 52, 913-924.	1.4	22
18	FAM64A: A Novel Oncogenic Target of Lung Adenocarcinoma Regulated by Both Strands of miR-99a (miR-99a-5p and miR-99a-3p). Cells, 2020, 9, 2083.	1.8	14

Κεικο Μιζυνο

#	Article	IF	CITATIONS
19	Detection of epidermal growth factor receptor gene T790M mutation in cytology samples using the cobas ® EGFR mutation test. Lung Cancer, 2017, 111, 190-194.	0.9	13
20	Serum B cell–activating factor (BAFF) level in connective tissue disease associated interstitial lung disease. BMC Pulmonary Medicine, 2015, 15, 110.	0.8	12
21	Identification of distinct N-glycosylation patterns on extracellular vesicles from small-cell and non–small-cell lung cancer cells. Journal of Biological Chemistry, 2022, 298, 101950.	1.6	12
22	Longâ€acting muscarinic antagonist regulates group 2 innate lymphoid cellâ€dependent airway eosinophilic inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2785-2796.	2.7	11
23	Development of a self-scored persistent airflow obstruction screening questionnaire in a general Japanese population: the Hisayama study. International Journal of COPD, 2017, Volume 12, 1469-1481.	0.9	10
24	Molecular Signature of Small Cell Lung Cancer after Treatment Failure: The MCM Complex as Therapeutic Target. Cancers, 2021, 13, 1187.	1.7	10
25	Prognostic factors in patients with skeletal-related events at non-small-cell lung cancer diagnosis. Molecular and Clinical Oncology, 2017, 7, 897-902.	0.4	8
26	Napsin A levels in epithelial lining fluid as a diagnostic biomarker of primary lung adenocarcinoma. BMC Pulmonary Medicine, 2017, 17, 195.	0.8	6
27	Regulation of Oncogenic Targets by Tumor-Suppressive miR-150-3p in Lung Squamous Cell Carcinoma. Biomedicines, 2021, 9, 1883.	1.4	6
28	Nivolumab treatment of elderly Japanese patients with non-small cell lung cancer: subanalysis of a real-world retrospective observational study (CA209-9CR). ESMO Open, 2020, 5, e000656.	2.0	4
29	High-Trough Plasma Concentration of Afatinib Is Associated with Dose Reduction. Cancers, 2021, 13, 3425.	1.7	3
30	Solid endobronchial tumor with <i>EWSR1â€FLI1</i> fusion gene – A diagnostically challenging case of the Ewing sarcoma. Pathology International, 2021, 71, 488-490.	0.6	1