
Navin Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8320849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyamines metabolism and NO signaling in plants. , 2022, , 345-372.		2
2	Targets of NO in plastids. , 2022, , 331-344.		0
3	Comparative Assessment of PAHs Reduction in Soil by Growing <i>Zea mays</i> L. Augmented with Microbial Consortia and Fertilizer: Modulation in Uptake and Antioxidant Defense Response. Polycyclic Aromatic Compounds, 2021, 41, 1694-1711.	1.4	2
4	Chlorella sp. modulates the glutathione mediated detoxification and S-adenosylmethionine dependent methyltransferase to counter arsenic toxicity in Oryza sativa L Ecotoxicology and Environmental Safety, 2021, 208, 111418.	2.9	5
5	Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants. International Journal of Molecular Sciences, 2021, 22, 9108.	1.8	89
6	Over-expression of chickpea metallothionein 1 gene confers tolerance against major toxic heavy metal stress in Arabidopsis. Physiology and Molecular Biology of Plants, 2021, 27, 2665-2678.	1.4	7
7	Sucrose plays key role in amelioration of arsenic induced phytotoxicity through modulating phosphate and silicon transporters, physiological and biochemical responses in C3 (Oryza sativa L.) and C4 (Zea mays L.). Environmental and Experimental Botany, 2020, 171, 103930.	2.0	15
8	Impact on endangered Gangetic dolphins due to construction of waterways on the riverÂGanga, India: an overview. Environmental Sustainability, 2020, 3, 123-138.	1.4	10
9	Climate Change-Induced Heavy Metal (or Metalloid) Stress in Crop Plants and Possible Mitigation Strategies. , 2020, , 293-326.		0
10	GABA mediated reduction of arsenite toxicity in rice seedling through modulation of fatty acids, stress responsive amino acids and polyamines biosynthesis. Ecotoxicology and Environmental Safety, 2019, 173, 15-27.	2.9	62
11	Over-expression of CarMT gene modulates the physiological performance and antioxidant defense system to provide tolerance against drought stress in Arabidopsis thaliana L. Ecotoxicology and Environmental Safety, 2019, 171, 54-65.	2.9	39
12	Ameliorative Mechanisms of Polyamines Against Abiotic Stress in the Rice Plants. , 2019, , 725-735.		8
13	Excessive fluoride in groundwater of Central Ganga Alluvial Plain: a case study of Fatehpur, North India. International Journal of Environmental Science and Technology, 2019, 16, 7791-7798.	1.8	11
14	Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective– a review. Environmental Pollution, 2018, 239, 95-108.	3.7	170
15	Diminution of arsenic accumulation in rice seedlings co-cultured with Anabaena sp.: Modulation in the expression of lower silicon transporters, two nitrogen dependent genes and lowering of antioxidants activity. Ecotoxicology and Environmental Safety, 2018, 151, 109-117.	2.9	13
16	Application of glycine reduces arsenic accumulation and toxicity in Oryza sativa L. by reducing the expression of silicon transporter genes. Ecotoxicology and Environmental Safety, 2018, 148, 410-417.	2.9	24
17	A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2017, 115, 163-173.	2.8	118
18	GABA accretion reduces Lsi-1 and Lsi-2 gene expressions and modulates physiological responses in Oryza sativa to provide tolerance towards arsenic. Scientific Reports, 2017, 7, 8786.	1.6	31

NAVIN KUMAR

#	Article	IF	CITATIONS
19	Selenite supplementation reduces arsenate uptake greater than phosphate but compromises the phosphate level and physiological performance in hydroponically grown <i>Oryza sativa</i> L Environmental Toxicology and Chemistry, 2016, 35, 163-172.	2.2	13
20	Response of two rice cultivars differing in their sensitivity towards arsenic, differs in their expression of glutaredoxin and glutathione S transferase genes and antioxidant usage. Ecotoxicology and Environmental Safety, 2016, 124, 393-405.	2.9	25
21	Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp Bioresource Technology, 2016, 221, 430-437.	4.8	60
22	H2O2 pretreated rice seedlings specifically reduces arsenate not arsenite: difference in nutrient uptake and antioxidant defense response in a contrasting pair of rice cultivars. Physiology and Molecular Biology of Plants, 2014, 20, 435-447.	1.4	8
23	Co-application of selenite and phosphate reduces arsenite uptake in hydroponically grown rice seedlings: Toxicity and defence mechanism. Ecotoxicology and Environmental Safety, 2013, 91, 171-179.	2.9	49
24	Role of sulfate in detoxification of arsenate-induced toxicity in <i>Zea mays</i> L. (SRHM 445): nutrient status and antioxidants. Journal of Plant Interactions, 2013, 8, 140-154.	1.0	19