Andrejs Krauklis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8320629/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s. Journal of Composites Science, 2021, 5, 28.	1.4	156
2	Mechanism of Yellowing: Carbonyl Formation during Hygrothermal Aging in a Common Amine Epoxy. Polymers, 2018, 10, 1017.	2.0	116
3	First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate. Physical Chemistry Chemical Physics, 2020, 22, 15354-15364.	1.3	74
4	Bentonite-ionic liquid composites for Congo red removal from aqueous solutions. Journal of Molecular Liquids, 2021, 337, 116373.	2.3	43
5	Time–Temperature–Plasticization Superposition Principle: Predicting Creep of a Plasticized Epoxy. Polymers, 2019, 11, 1848.	2.0	41
6	Hygrothermal Aging of Amine Epoxy: Reversible Static and Fatigue Properties. Open Engineering, 2018, 8, 447-454.	0.7	38
7	Modelling of Environmental Ageing of Polymers and Polymer Composites—Durability Prediction Methods. Polymers, 2022, 14, 907.	2.0	38
8	FeOOH-modified clay sorbents for arsenic removal from aqueous solutions. Environmental Technology and Innovation, 2019, 13, 364-372.	3.0	37
9	Modelling of Environmental Ageing of Polymers and Polymer Composites—Modular and Multiscale Methods. Polymers, 2022, 14, 216.	2.0	34
10	The effect of temperature and water immersion on the interlaminar shear fatigue of glass fiber epoxy composites using the I-beam method. Composites Science and Technology, 2019, 181, 107703.	3.8	29
11	Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites. Materials, 2018, 11, 586.	1.3	28
12	Modeling and Risk Analysis of Dam-Break Flooding in a Semi-Arid Montane Watershed: A Case Study of the Yabous Dam, Northeastern Algeria. Water (Switzerland), 2022, 14, 767.	1.2	26
13	Prediction of Orthotropic Hygroscopic Swelling of Fiber-Reinforced Composites from Isotropic Swelling of Matrix Polymer. Journal of Composites Science, 2019, 3, 10.	1.4	24
14	<scp>FeOOH</scp> and <scp>Mn₈O₁₀Cl₃</scp> modified zeolites for As(V) removal in aqueous medium. Journal of Chemical Technology and Biotechnology, 2017, 92, 1948-1960.	1.6	23
15	Long-Term Hydrolytic Degradation of the Sizing-Rich Composite Interphase. Coatings, 2019, 9, 263.	1.2	23
16	Anisotropic fluid diffusion in carbon fiber reinforced composite rods: Experimental, analytical and numerical study. Marine Structures, 2018, 59, 47-59.	1.6	19
17	Surfactant-Modified Clay Sorbents for the Removal of p-nitrophenol. Clays and Clay Minerals, 2019, 67, 132-142.	0.6	19
18	A novel method for testing and determining ILSS for marine and offshore composites. Composite Structures, 2019, 220, 431-440.	3.1	19

ANDREJS KRAUKLIS

#	Article	IF	CITATIONS
19	Long-Term Dissolution of Glass Fibers in Water Described by Dissolving Cylinder Zero-Order Kinetic Model: Mass Loss and Radius Reduction. Open Chemistry, 2018, 16, 1189-1199.	1.0	17
20	Dissolution Kinetics of R-Glass Fibres: Influence of Water Acidity, Temperature, and Stress Corrosion. Fibers, 2019, 7, 22.	1.8	16
21	From the Beehives: Identification and Comparison of Physicochemical Properties of Algerian Honey. Resources, 2021, 10, 94.	1.6	16
22	Orthotropic fluid diffusion in composite marine structures. Experimental procedure, analytical and numerical modelling of plates, rods and pipes. Composites Part A: Applied Science and Manufacturing, 2018, 115, 196-205.	3.8	14
23	A Simplistic Preliminary Assessment of Ginstling-Brounstein Model for Solid Spherical Particles in the Context of a Diffusion-Controlled Synthesis. Open Chemistry, 2018, 16, 64-72.	1.0	13
24	Alkali-Activated Metakaolin as a Zeolite-Like Binder for the Production of Adsorbents. Inorganics, 2019, 7, 141.	1.2	12
25	Zero Stress Aging of Glass and Carbon Fibers in Water and Oil—Strength Reduction Explained by Dissolution Kinetics. Fibers, 2019, 7, 107.	1.8	10
26	Comparative study of hydrothermal synthesis routes of zeolite A. Materials Today: Proceedings, 2020, 33, 1984-1987.	0.9	10
27	Multiscale Modelling of Environmental Degradation—First Steps. Solid Mechanics and Its Applications, 2018, , 135-149.	0.1	9
28	Long-term ISO 23936-2 sweet oil ageing of HNBR. Polymer Testing, 2021, 102, 107343.	2.3	8
29	Characterization of Rough PTFE Surfaces by the Modified Wilhelmy Balance Technique. Polymers, 2020, 12, 1528.	2.0	6
30	Modular Paradigm for Composites: Modeling Hydrothermal Degradation of Glass Fibers. Fibers, 2021, 9, 83.	1.8	5
31	Conservation Environments' Effect on the Compressive Strength Behaviour of Wood–Concrete Composites. Materials, 2022, 15, 3572.	1.3	5
32	Modified Ginstling-Brounshtein model for wet precipitation synthesis of hydroxyapatite: analytical and experimental study. Acta of Bioengineering and Biomechanics, 2018, 20, 47-57.	0.2	4
33	Influence of Environmental Parameters and Fiber Orientation on Dissolution Kinetics of Glass Fibers in Polymer Composites. Journal of Composites Science, 2022, 6, 210.	1.4	4
34	Use of Synthetic and Natural Zeolites Tailored for As(V) Sorption. , 0, , .		3
35	Predicting multi-axial diffusion of water in laminated composite structural components. Composite Structures, 2021, 261, 113551.	3.1	3
36	Unexpected Precipitation Observed during Arsenic Removal from Water via Sorbent Modified with a Mixed Oxidation State Manganese. International Journal of Applied Science - Research and Review, 2018, 05, .	0.2	1

#	Article	IF	CITATIONS
37	Predicting environmental ageing of composites: modular approach & multiscale modelling. Materials Proceedings, 0, , .	0.2	1