Alexander O Gill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8320517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of Bactericidal Action of Cinnamaldehyde against Listeria monocytogenes and of Eugenol against L. monocytogenes and Lactobacillus sakei. Applied and Environmental Microbiology, 2004, 70, 5750-5755.	1.4	358
2	Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24 °C. International Journal of Food Microbiology, 2003, 80, 251-259.	2.1	131
3	Inhibition of bacterial growth on ham and bologna by lysozyme, nisin and EDTA. Food Research International, 2000, 33, 83-90.	2.9	111
4	Micro-array for the identification of Shiga toxin-producing Escherichia coli (STEC) seropathotypes associated with Hemorrhagic Colitis and Hemolytic Uremic Syndrome in humans. International Journal of Food Microbiology, 2010, 142, 318-329.	2.1	98
5	Surface Application of Lysozyme, Nisin, and EDTA to Inhibit Spoilage and Pathogenic Bacteria on Ham and Bologna. Journal of Food Protection, 2000, 63, 1338-1346.	0.8	85
6	Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping. Frontiers in Microbiology, 2018, 9, 836.	1.5	53
7	Global and regional source attribution of Shiga toxin-producing <i>Escherichia coli</i> infections using analysis of outbreak surveillance data. Epidemiology and Infection, 2019, 147, e236.	1.0	46
8	Evaluation of eight agar media for the isolation of shiga toxin—Producing Escherichia coli. Journal of Microbiological Methods, 2014, 96, 6-11.	0.7	42
9	A Syst-OMICS Approach to Ensuring Food Safety and Reducing the Economic Burden of Salmonellosis. Frontiers in Microbiology, 2017, 8, 996.	1.5	42
10	Use of low dose e-beam irradiation to reduce E. coli O157:H7, non-O157 (VTEC) E. coli and Salmonella viability on meat surfaces. Meat Science, 2014, 96, 413-418.	2.7	41
11	Application of High Pressure Processing To Kill Escherichia coli O157 in Ready-to-Eat Meats. Journal of Food Protection, 2008, 71, 2182-2189.	0.8	38
12	The Importance of Bacterial Culture to Food Microbiology in the Age of Genomics. Frontiers in Microbiology, 2017, 8, 777.	1.5	38
13	Development of a Method for the Detection of Verotoxin-Producing Escherichia coli in Food. Journal of Food Protection, 2012, 75, 827-837.	0.8	35
14	The Locus of Heat Resistance Confers Resistance to Chlorine and Other Oxidizing Chemicals in Escherichia coli. Applied and Environmental Microbiology, 2020, 86, .	1.4	31
15	Characterization of Atypical Shiga Toxin Gene Sequences and Description of Stx2j, a New Subtype. Journal of Clinical Microbiology, 2022, 60, jcm0222921.	1.8	21
16	Preservative packaging for fresh meats, poultry, and fin fish. , 2005, , 204-226.		20
17	Enumeration of Escherichia coli O157 in Outbreak-Associated Gouda Cheese Made with Raw Milk. Journal of Food Protection, 2015, 78, 1733-1737.	0.8	20
18	Relative response of populations of Escherichia coli and Salmonella enterica to exposure to thermal, alkaline and acidic treatments. International Journal of Food Microbiology, 2019, 293, 94-101.	2.1	20

ALEXANDER O GILL

#	Article	IF	CITATIONS
19	Bacteriological analysis of wheat flour associated with an outbreak of Shiga toxin-producing Escherichia coli O121. Food Microbiology, 2019, 82, 474-481.	2.1	19
20	Shiga toxin-producing Escherichia coli survives storage in wheat flour for two years. Food Microbiology, 2020, 87, 103380.	2.1	17
21	Non-O157 verotoxigenic Escherichia coli and beef: a Canadian perspective. Canadian Journal of Veterinary Research, 2010, 74, 161-9.	0.2	16
22	Enumeration of Escherichia coli O157:H7 in Outbreak-Associated Beef Patties. Journal of Food Protection, 2016, 79, 1266-1268.	0.8	15
23	Method for the Detection of Priority Shiga Toxin–Producing Escherichia coli in Beef Trim. Journal of Food Protection, 2013, 76, 1689-1696.	0.8	14
24	Inhibition of polymerase chain reaction for the detection of Escherichia coli O157:H7 and Salmonella enterica on walnut kernels. Food Microbiology, 2013, 35, 15-20.	2.1	9
25	High pressure processing inactivates human cytomegalovirus and hepatitis A virus while preserving macronutrients and native lactoferrin in human milk. Innovative Food Science and Emerging Technologies, 2022, 75, 102891.	2.7	9
26	Risk Profile on Non-O157 Verotoxin-Producing Escherichia Coli in Produce, Beef, Milk and Dairy Products in Canada. International Food Risk Analysis Journal, 0, , 1.	0.8	8
27	Evaluation of High-Pressure Processing in Inactivation of the Hepatitis E Virus. Frontiers in Microbiology, 2020, 11, 461.	1.5	7
28	Changes detected in the genome sequences of <i>Escherichia coli</i> , <i>Listeria monocytogenes</i> , <i>Vibrio parahaemolyticus</i> , and <i>Salmonella enterica</i> after serial subculturing. Canadian Journal of Microbiology, 2019, 65, 842-850.	0.8	5
29	Use of Low-Dose Irradiation To Evaluate the Radiation Sensitivity of Escherichia coli O157:H7, Non-O157 Verotoxigenic Escherichia coli, and Salmonella in Phosphate-Buffered Saline. Journal of Food Protection, 2013, 76, 1438-1442.	0.8	4
30	Delayed lactose utilization among Shiga toxin-producing Escherichia coli of serogroup O121. Food Microbiology, 2022, 102, 103903.	2.1	3
31	PCR Primers for Screening Food for Verotoxin-Producing Escherichia coli, Inclusive of Three vt1 and Seven vt2 Subtypes. Journal of Food Protection, 2021, 84, 296-302.	0.8	2
32	Comment on response to letter to the editor on â€~Shiga toxin Stx2 is heat-stable and not inactivated by pasteurization, IJFM, 136:290–294'. International Journal of Food Microbiology, 2010, 139, 220.	2.1	0
33	Letter to the editor on â€ [~] Shiga toxin Stx2 is heat-stable and not inactivated by pasteurization. IJFM. 136:290–294'. International Journal of Food Microbiology, 2010, 139, 218. 	2.1	Ο
	Chandend methods for the besterial evolution of most 2022		

34 Standard methods for the bacteriological analysis of meat. , 2022, , .