
Jennifer Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8320480/publications.pdf Version: 2024-02-01

IENNIEED DAVIS

#	Article	IF	CITATIONS
1	If these myocytes could talk, they would speak the language of metabolites. Journal of Clinical Investigation, 2022, 132, .	3.9	0
2	MBNL1 drives dynamic transitions between fibroblasts and myofibroblasts in cardiac wound healing. Cell Stem Cell, 2022, 29, 419-433.e10.	5.2	25
3	Controlling cardiac fibrosis through fibroblast state space modulation. Cellular Signalling, 2021, 79, 109888.	1.7	14
4	Engrafted Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes Undergo Clonal Expansion In Vivo. Circulation, 2021, 143, 1635-1638.	1.6	9
5	The effect of variable troponin C mutation thin filament incorporation on cardiac muscle twitch contractions. Journal of Molecular and Cellular Cardiology, 2021, 155, 112-124.	0.9	13
6	Infarct Collagen Topography Regulates Fibroblast Fate via p38-Yes-Associated Protein Transcriptional Enhanced Associate Domain Signals. Circulation Research, 2020, 127, 1306-1322.	2.0	40
7	Engineering Heart Morphogenesis. Trends in Biotechnology, 2020, 38, 835-845.	4.9	10
8	A Rainbow Reporter Tracks Single Cells and Reveals Heterogeneous Cellular Dynamics among Pluripotent Stem Cells and Their Differentiated Derivatives. Stem Cell Reports, 2020, 15, 226-241.	2.3	16
9	Regulators of cardiac fibroblast cell state. Matrix Biology, 2020, 91-92, 117-135.	1.5	37
10	Modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts. JCI Insight, 2020, 5, .	2.3	17
11	Spatial presentation of biological molecules to cells by localized diffusive transfer. Lab on A Chip, 2019, 19, 2114-2126.	3.1	1
12	Mechanoregulation of Myofibroblast Fate and Cardiac Fibrosis. Advanced Biology, 2018, 2, 1700172.	3.0	15
13	Cyclic Stiffness Modulation of Cellâ€Laden Protein–Polymer Hydrogels in Response to Userâ€Specified Stimuli Including Light. Advanced Biology, 2018, 2, 1800240.	3.0	80
14	The mitochondrial calcium uniporter underlies metabolic fuel preference in skeletal muscle. JCI Insight, 2018, 3, .	2.3	60
15	Putting the Brakes on Hypertensive Remodeling. Circulation, 2017, 135, 2058-2061.	1.6	6
16	Fibroblast-Specific Genetic Manipulation of p38 Mitogen-Activated Protein Kinase In Vivo Reveals Its Central Regulatory Role in Fibrosis. Circulation, 2017, 136, 549-561.	1.6	225
17	Thrombospondin expression in myofibers stabilizes muscle membranes. ELife, 2016, 5, .	2.8	41
18	Molecular networks underlying myofibroblast fate and fibrosis. Journal of Molecular and Cellular Cardiology, 2016, 97, 153-161.	0.9	115

JENNIFER DAVIS

#	Article	IF	CITATIONS
19	A Tension-Based Model Distinguishes Hypertrophic versus Dilated Cardiomyopathy. Cell, 2016, 165, 1147-1159.	13.5	193
20	Muscular dystrophy in a dish: engineered human skeletal muscle mimetics for disease modeling and drug discovery. Drug Discovery Today, 2016, 21, 1387-1398.	3.2	44
21	Nocardia farcinica Meningitis Masquerading as Central Nervous System Metastasis in a Child With Cerebellar Pilocytic Astrocytoma. Journal of Pediatric Hematology/Oncology, 2015, 37, 482-485.	0.3	5
22	MBNL1-mediated regulation of differentiation RNAs promotes myofibroblast transformation and the fibrotic response. Nature Communications, 2015, 6, 10084.	5.8	72
23	Cardiac-specific deletion of protein phosphatase 1β promotes increased myofilament protein phosphorylation and contractile alterations. Journal of Molecular and Cellular Cardiology, 2015, 87, 204-213.	0.9	43
24	Enhanced Ca2+ influx from STIM1–Orai1 induces muscle pathology in mouse models of muscular dystrophy. Human Molecular Genetics, 2014, 23, 3706-3715.	1.4	52
25	Overexpression of the Na ⁺ /K ⁺ ATPase α2 But Not α1 Isoform Attenuates Pathological Cardiac Hypertrophy and Remodeling. Circulation Research, 2014, 114, 249-256.	2.0	61
26	Myofibroblasts: Trust your heart and let fate decide. Journal of Molecular and Cellular Cardiology, 2014, 70, 9-18.	0.9	273
27	Transient Receptor Potential Channels Contribute to Pathological Structural and Functional Remodeling After Myocardial Infarction. Circulation Research, 2014, 115, 567-580.	2.0	101
28	Noncanonical EF-hand motif strategically delays Ca2+ buffering to enhance cardiac performance. Nature Medicine, 2013, 19, 305-312.	15.2	39
29	Apoptosis Repressor with a CARD Domain (ARC) Restrains Bax-Mediated Pathogenesis in Dystrophic Skeletal Muscle. PLoS ONE, 2013, 8, e82053.	1.1	10
30	Lost in Transgenesis. Circulation Research, 2012, 111, 761-777.	2.0	92
31	A TRPC6-Dependent Pathway for Myofibroblast Transdifferentiation and Wound Healing InÂVivo. Developmental Cell, 2012, 23, 705-715.	3.1	294
32	Diastolic dysfunction and thin filament dysregulation resulting from excitation–contraction uncoupling in a mouse model of restrictive cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2012, 53, 446-457.	0.9	20
33	Extracellular Signal-Regulated Kinases 1 and 2 Regulate the Balance Between Eccentric and Concentric Cardiac Growth. Circulation Research, 2011, 108, 176-183.	2.0	217
34	Heart-specific Deletion of CnB1 Reveals Multiple Mechanisms Whereby Calcineurin Regulates Cardiac Growth and Function. Journal of Biological Chemistry, 2010, 285, 6716-6724.	1.6	44
35	Chronic administration of membrane sealant prevents severe cardiac injury and ventricular dilatation in dystrophic dogs. Journal of Clinical Investigation, 2010, 120, 1140-1150.	3.9	100
36	Combinatorial Effects of Double Cardiomyopathy Mutant Alleles in Rodent Myocytes: A Predictive Cellular Model of Myofilament Dysregulation in Disease. PLoS ONE, 2010, 5, e9140.	1.1	11

JENNIFER DAVIS

#	Article	IF	CITATIONS
37	Allele and species dependent contractile defects by restrictive and hypertrophic cardiomyopathy-linked troponin I mutants. Journal of Molecular and Cellular Cardiology, 2008, 44, 891-904.	0.9	39
38	Designing Heart Performance by Gene Transfer. Physiological Reviews, 2008, 88, 1567-1651.	13.1	52
39	Parvalbumin isoforms differentially accelerate cardiac myocyte relaxation kinetics in an animal model of diastolic dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1705-H1713.	1.5	24
40	Thin Filament Disinhibition by Restrictive Cardiomyopathy Mutant R193H Troponin I Induces Ca 2+ -Independent Mechanical Tone and Acute Myocyte Remodeling. Circulation Research, 2007, 100, 1494-1502.	2.0	67
41	Relationship between muscle stress and intramuscular pressure during dynamic muscle contractions. Muscle and Nerve, 2007, 36, 313-319.	1.0	22
42	Genetic Engineering and Therapy for Inherited and Acquired Cardiomyopathies. Annals of the New York Academy of Sciences, 2006, 1080, 437-450.	1.8	4
43	Enteroendocrine cell expression of a cholecystokinin gene construct in transgenic mice and cultured cells. American Journal of Physiology - Renal Physiology, 2005, 288, G354-G361.	1.6	9
44	Structural and Functional Roles of Desmin in Mouse Skeletal Muscle during Passive Deformation. Biophysical Journal, 2004, 86, 2993-3008.	0.2	112
45	Performance characteristics of a pressure microsensor. Journal of Biomechanics, 2003, 36, 283-287.	0.9	38
46	Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle. Journal of Biomechanics, 2003, 36, 505-512.	0.9	164