Thomas Heine

List of Publications by Citations

Source: https://exaly.com/author-pdf/8320227/thomas-heine-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24,876 85 382 146 h-index g-index citations papers 28,668 438 8.4 7.42 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
382	Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. <i>Physical Review B</i> , 2011 , 83,	3.3	1247
381	Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. <i>Journal of the American Chemical Society</i> , 2012 , 134, 19524-7	16.4	939
380	An atlas of two-dimensional materials. <i>Chemical Society Reviews</i> , 2014 , 43, 6537-54	58.5	905
379	Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. <i>Journal of the American Chemical Society</i> , 2013 , 135, 5328-31	16.4	555
378	Two-dimensional sp carbon-conjugated covalent organic frameworks. <i>Science</i> , 2017 , 357, 673-676	33.3	543
377	Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. <i>Journal of the American Chemical Society</i> , 2013 , 135, 17853-61	16.4	496
376	Graphene nanostructures as tunable storage media for molecular hydrogen. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 10439-44	11.5	487
375	Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO2 Separation. <i>Chemistry of Materials</i> , 2016 , 28, 1277-1285	9.6	404
374	Induced magnetic fields in aromatic [n]-annulenesInterpretation of NICS tensor components. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 273-276	3.6	397
373	Chemical sensing in two dimensional porous covalent organic nanosheets. <i>Chemical Science</i> , 2015 , 6, 3931-3939	9.4	385
372	Highly Emissive Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2016 , 138, 579	97 <u>+8.Q</u> 0	373
371	A stable non-classical metallofullerene family. <i>Nature</i> , 2000 , 408, 427-8	50.4	354
370	Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13052-6	16.4	308
369	Solid state organic amine detection in a photochromic porous metal organic framework. <i>Chemical Science</i> , 2015 , 6, 1420-1425	9.4	261
368	An Efficient a Posteriori Treatment for Dispersion Interaction in Density-Functional-Based Tight Binding. <i>Journal of Chemical Theory and Computation</i> , 2005 , 1, 841-7	6.4	251
367	Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2757-62	16.4	237
366	The induced magnetic field in cyclic molecules. <i>Chemistry - A European Journal</i> , 2004 , 10, 4367-71	4.8	236

(2005-2006)

365	On the mechanical behavior of WS2 nanotubes under axial tension and compression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 523-8	11.5	233
364	GeP: A Small Indirect Band Gap 2D Crystal with High Carrier Mobility and Strong Interlayer Quantum Confinement. <i>Nano Letters</i> , 2017 , 17, 1833-1838	11.5	228
363	High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. <i>Nature Materials</i> , 2018 , 17, 1027-1032	27	216
362	Interplaying Intrinsic and Extrinsic Proton Conductivities in Covalent Organic Frameworks. <i>Chemistry of Materials</i> , 2016 , 28, 1489-1494	9.6	211
361	Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. <i>Physical Review B</i> , 2013 , 87,	3.3	208
360	Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. <i>Accounts of Chemical Research</i> , 2015 , 48, 65-72	24.3	203
359	Tuning Magnetism and Electronic Phase Transitions by Strain and Electric Field in Zigzag MoS2 Nanoribbons. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2934-41	6.4	203
358	Stacking in bulk and bilayer hexagonal boron nitride. <i>Physical Review Letters</i> , 2013 , 111, 036104	7.4	202
357	Molecular Level Control of the Capacitance of Two-Dimensional Covalent Organic Frameworks: Role of Hydrogen Bonding in Energy Storage Materials. <i>Chemistry of Materials</i> , 2017 , 29, 2074-2080	9.6	188
356	Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3015-8	16.4	183
355	Photoinduced Charge-Carrier Generation in Epitaxial MOF Thin Films: High Efficiency as a Result of an Indirect Electronic Band Gap?. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7441-5	16.4	182
354	Recent advances in planar tetracoordinate carbon chemistry. <i>Journal of Computational Chemistry</i> , 2007 , 28, 362-72	3.5	172
353	The induced magnetic field. Accounts of Chemical Research, 2012, 45, 215-28	24.3	170
352	The structure of layered covalent-organic frameworks. <i>Chemistry - A European Journal</i> , 2011 , 17, 2388-9	92 4.8	167
351	Pentagon adjacency as a determinant of fullerene stability. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 2913-2918	3.6	167
350	Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 4982-4986	; 16.4	166
349	A Nitrogen-Rich 2D sp -Carbon-Linked Conjugated Polymer Framework as a High-Performance Cathode for Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 849-853	16.4	164
348	The magnetic shielding function of molecules and pi-electron delocalization. <i>Chemical Reviews</i> , 2005 , 105, 3889-910	68.1	163

347	Hydrogen storage by physisorption on nanostructured graphite platelets. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 980	3.6	154
346	A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy. <i>Scientific Reports</i> , 2012 , 2, 921	4.9	153
345	The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. <i>Chemical Society Reviews</i> , 2015 , 44, 2603-14	58.5	149
344	On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. <i>Nature Chemistry</i> , 2019 , 11, 994-1000	17.6	149
343	Imogolite nanotubes: stability, electronic, and mechanical properties. ACS Nano, 2007, 1, 362-8	16.7	148
342	Multiple-component covalent organic frameworks. <i>Nature Communications</i> , 2016 , 7, 12325	17.4	147
341	Borazine: to be or not to be aromatic. Structural Chemistry, 2007, 18, 833-839	1.8	147
340	Density-functional based tight-binding: an approximate DFT method. <i>Journal of the Brazilian Chemical Society</i> , 2009 , 20, 1193-1205	1.5	146
339	Robust two-dimensional topological insulators in methyl-functionalized bismuth, antimony, and lead bilayer films. <i>Nano Letters</i> , 2015 , 15, 1083-9	11.5	145
338	B19-: an aromatic Wankel motor. Angewandte Chemie - International Edition, 2010, 49, 5668-71	16.4	145
337	Description of electron delocalization via the analysis of molecular fields. <i>Chemical Reviews</i> , 2005 , 105, 3812-41	68.1	144
336	Analysis of Aromatic Delocalization: Individual Molecular Orbital Contributions to Nucleus-Independent Chemical Shifts. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 6470-6475	2.8	141
335	Extension of the Universal Force Field to Metal-Organic Frameworks. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 880-91	6.4	130
334	Colloidal synthesis of single-layer MSe2 (M = Mo, W) nanosheets via anisotropic solution-phase growth approach. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7266-9	16.4	127
333	Defect-induced conductivity anisotropy in MoS2 monolayers. <i>Physical Review B</i> , 2013 , 88,	3.3	126
332	Do all-metal antiaromatic clusters exist?. <i>Journal of the American Chemical Society</i> , 2003 , 125, 13930-1	16.4	124
331	Electromechanics in MoS[and WSE]nanotubes vs. monolayers. Scientific Reports, 2013, 3, 2961	4.9	122
330	Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15320-15326	13	121

(2015-2007)

329	Boron rings enclosing planar hypercoordinate group 14 elements. <i>Journal of the American Chemical Society</i> , 2007 , 129, 14767-74	16.4	121
328	Decoding the Morphological Diversity in Two Dimensional Crystalline Porous Polymers by Core Planarity Modulation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7806-10	16.4	121
327	Interaction of Small Gases with the Unsaturated Metal Centers of the HKUST-1 Metal Organic Framework. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 14570-14578	3.8	119
326	Ultrastable Imine-Based Covalent Organic Frameworks for Sulfuric Acid Recovery: An Effect of Interlayer Hydrogen Bonding. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5797-5802	16.4	118
325	Transition-metal dichalcogenides for spintronic applications. <i>Annalen Der Physik</i> , 2014 , 526, 395-401	2.6	116
324	Photocarrier generation from interlayer charge-transfer transitions in WS-graphene heterostructures. <i>Science Advances</i> , 2018 , 4, e1700324	14.3	115
323	MFU-4 a metal-organic framework for highly effective H(2)/D(2) separation. <i>Advanced Materials</i> , 2013 , 25, 635-9	24	114
322	Theoretical analysis of the smallest carbon cluster containing a planar tetracoordinate carbon. Journal of the American Chemical Society, 2004 , 126, 16160-9	16.4	114
321	3D Synergistically Active Carbon Nanofibers for Improved Oxygen Evolution. <i>Advanced Energy Materials</i> , 2017 , 7, 1602928	21.8	111
320	Two-Dimensional Topological Insulators: Progress and Prospects. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1905-1919	6.4	110
319	Nanoporous designer solids with huge lattice constant gradients: multiheteroepitaxy of metal-organic frameworks. <i>Nano Letters</i> , 2014 , 14, 1526-9	11.5	108
318	Unveiling Electronic Properties in Metal-Phthalocyanine-Based Pyrazine-Linked Conjugated Two-Dimensional Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2019 , 141, 16810-16816	16.4	107
317	Tandem intercalation strategy for single-layer nanosheets as an effective alternative to conventional exfoliation processes. <i>Nature Communications</i> , 2015 , 6, 5763	17.4	106
316	Quantum spin Hall effect and topological phase transition in two-dimensional square transition-metal dichalcogenides. <i>Physical Review B</i> , 2015 , 92,	3.3	106
315	Unravelling phenomenon of internal rotation in B13+ through chemical bonding analysis. <i>Chemical Communications</i> , 2011 , 47, 6242-4	5.8	106
314	On the reticular construction concept of covalent organic frameworks. <i>Beilstein Journal of Nanotechnology</i> , 2010 , 1, 60-70	3	106
313	Defects in MOFs: a thorough characterization. <i>ChemPhysChem</i> , 2012 , 13, 2025-9	3.2	105
312	Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Materials, 2015 , 2, 015006	5.9	104

311	Sigma and pi contributions to the induced magnetic field: indicators for the mobility of electrons in molecules. <i>Journal of Computational Chemistry</i> , 2007 , 28, 302-9	3.5	103
310	Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. <i>Nanoscale</i> , 2016 , 8, 258	9 <i>-5</i> 9.3	102
309	Fabrication of highly uniform gel coatings by the conversion of surface-anchored metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8-11	16.4	102
308	Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites: direct measurement and theoretical analysis. <i>ACS Nano</i> , 2014 , 8, 761-70	16.7	101
307	B18(2-): a quasi-planar bowl member of the Wankel motor family. <i>Chemical Communications</i> , 2014 , 50, 8140-3	5.8	98
306	Sigma-antiaromaticity in cyclobutane, cubane, and other molecules with saturated four-membered rings. <i>Organic Letters</i> , 2003 , 5, 23-6	6.2	94
305	Study of angiotensin-(1-7) vasoactive peptide and its beta-cyclodextrin inclusion complexes: complete sequence-specific NMR assignments and structural studies. <i>Peptides</i> , 2007 , 28, 2199-210	3.8	93
304	DFTB Parameters for the Periodic Table: Part 1, Electronic Structure. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 4006-17	6.4	91
303	Theoretical studies on the smallest fullerene: from monomer to oligomers and solid States. <i>Chemistry - A European Journal</i> , 2004 , 10, 963-70	4.8	87
302	Evaluation of aromaticity: A new dissected NICS model based on canonical orbitals. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 246-251	3.6	86
301	Transition-metal dichalcogenide bilayers: Switching materials for spintronic and valleytronic applications. <i>Physical Review B</i> , 2014 , 90,	3.3	85
300	Hydrogen sieving and storage in fullerene intercalated graphite. <i>Nano Letters</i> , 2007 , 7, 1-5	11.5	85
299	C36, a hexavalent building block for fullerene compounds and solids. <i>Chemical Physics Letters</i> , 1999 , 300, 369-378	2.5	85
298	Spontaneous ripple formation in MoS(2) monolayers: electronic structure and transport effects. <i>Advanced Materials</i> , 2013 , 25, 5473-5	24	83
297	CAl4Be and CAl3Be2(-): global minima with a planar pentacoordinate carbon atom. <i>Chemical Communications</i> , 2010 , 46, 8776-8	5.8	83
296	Highly Sensitive Electromechanical Piezoresistive Pressure Sensors Based on Large-Area Layered PtSe Films. <i>Nano Letters</i> , 2018 , 18, 3738-3745	11.5	82
295	Correction for dispersion and Coulombic interactions in molecular clusters with density functional derived methods: application to polycyclic aromatic hydrocarbon clusters. <i>Journal of Chemical Physics</i> , 2009 , 130, 244304	3.9	81
294	Antiaromaticity in bare deltahedral silicon clusters satisfying WadeN and HirschN rules: an apparent correlation of antiaromaticity with high symmetry. <i>Journal of the American Chemical Society</i> , 2004 , 126, 430-1	16.4	79

(2005-2019)

293	Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. <i>Nature Communications</i> , 2019 , 10, 4225	17.4	78
292	BoronBitrogen analogues of the fullerenes: the isolated-square rule. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 2197-2201		78
291	Density Functional Theory and Beyond for Band-Gap Screening: Performance for Transition-Metal Oxides and Dichalcogenides. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 2950-8	6.4	77
2 90	Energetics of Fullerenes with Four-Membered Rings. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 6984-	6991	77
289	Noncovalent bifunctional organocatalysts: powerful tools for contiguous quaternary-tertiary stereogenic carbon formation, scope, and origin of enantioselectivity. <i>Chemistry - A European Journal</i> , 2012 , 18, 4088-98	4.8	75
288	Aromaticity of four-membered-ring 6pi-electron systems: N2S2 and Li2C4H4. <i>Journal of the American Chemical Society</i> , 2004 , 126, 3132-8	16.4	75
287	Polyoxometalates made of gold: the polyoxoaurate [Au(III)4As(V)4O20]8 <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 1886-9	16.4	74
286	Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites. <i>Nature Communications</i> , 2017 , 8, 14496	17.4	73
285	Revealing unusual chemical bonding in planar hyper-coordinate Ni2Ge and quasi-planar Ni2Si two-dimensional crystals. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 26043-8	3.6	73
284	Structure and Fluxionality of B Probed by Infrared Photodissociation Spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 501-504	16.4	70
283	Extension of the Universal Force Field for Metal-Organic Frameworks. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 5215-5225	6.4	70
282	Dynamical behavior of Borospherene: A Nanobubble. <i>Scientific Reports</i> , 2015 , 5, 11287	4.9	70
281	A semiconducting layered metal-organic framework magnet. <i>Nature Communications</i> , 2019 , 10, 3260	17.4	69
280	Poly(perfluoroalkylation) of metallic nitride fullerenes reveals addition-pattern guidelines: synthesis and characterization of a family of Sc3N@C80(CF3)n (n = 2-16) and their radical anions. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2672-90	16.4	69
279	A Single-Material Logical Junction Based on 2D Crystal PdS2. Advanced Materials, 2016, 28, 853-6	24	68
278	Enhancement of Chemical Stability and Crystallinity in Porphyrin-Containing Covalent Organic Frameworks by Intramolecular Hydrogen Bonds. <i>Angewandte Chemie</i> , 2013 , 125, 13290-13294	3.6	67
277	Post-anti-vanNt Hoff-Le Bel motif in atomically thin germanium-copper alloy film. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 17545-51	3.6	65
276	Planar tetracoordinate carbons in cyclic hydrocarbons. <i>Organic Letters</i> , 2005 , 7, 1509-12	6.2	65

275	Structural and electronic properties of graphene nanoflakes. Physical Review B, 2010, 81,	3.3	64
274	Two-Dimensional Boronate Ester Covalent Organic Framework Thin Films with Large Single Crystalline Domains for a Neuromorphic Memory Device. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8218-8224	16.4	63
273	H2 adsorption in metal-organic frameworks: dispersion or electrostatic interactions?. <i>Chemistry - A European Journal</i> , 2008 , 14, 6597-600	4.8	63
272	Single-Layer TlO: A Metal-Shrouded 2D Semiconductor with High Electronic Mobility. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11694-11697	16.4	60
271	What is the maximum coordination number in a planar structure?. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 4275-6	16.4	60
270	Nanolubrication: How Do MoS2-Based Nanostructures Lubricate?. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17764-17767	3.8	58
269	Energetics of fullerenes with heptagonal rings. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 2203		58
268	AuToGraFS: automatic topological generator for framework structures. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 9607-14	2.8	57
267	Visualizing electronic interactions between iron and carbon by X-ray chemical imaging and spectroscopy. <i>Chemical Science</i> , 2015 , 6, 3262-3267	9.4	56
266	Structure and bonding of IrB12Dconverting a rigid boron B12 platelet to a Wankel motor. <i>RSC Advances</i> , 2016 , 6, 27177-27182	3.7	56
265	PtTe Monolayer: Two-Dimensional Electrocatalyst with High Basal Plane Activity toward Oxygen Reduction Reaction. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12732-12735	16.4	56
264	Highly Crystalline and Semiconducting Imine-Based Two-Dimensional Polymers Enabled by Interfacial Synthesis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 6028-6036	16.4	55
263	Identification of Prime Factors to Maximize the Photocatalytic Hydrogen Evolution of Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9752-9762	16.4	55
262	Electronic properties of transition-metal dichalcogenides. MRS Bulletin, 2015, 40, 577-584	3.2	55
261	Dynamical behavior of boron clusters. <i>Nanoscale</i> , 2016 , 8, 17639-17644	7.7	55
260	Two-Dimensional Kagome Lattices Made of Hetero Triangulenes Are Dirac Semimetals or Single-Band Semiconductors. <i>Journal of the American Chemical Society</i> , 2019 , 141, 743-747	16.4	55
259	From layers to nanotubes: Transition metal disulfides TMS2. European Physical Journal B, 2012 , 85, 1	1.2	54
258	A noble-metalate bowl: the polyoxo-6-vanado(V)-7-palladate(II) [Pd7V6O24(OH)2]6 <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 7807-11	16.4	53

257	Fluxional Boron Clusters: From Theory to Reality. <i>Accounts of Chemical Research</i> , 2019 , 52, 2732-2744	24.3	52
256	Palladastannatrane 🖪 PdII-SnIV Dative Bond. European Journal of Inorganic Chemistry, 2008, 2008, 4225	-42329	52
255	Two-dimensional inversion-asymmetric topological insulators in functionalized III-Bi bilayers. <i>Physical Review B</i> , 2015 , 91,	3.3	51
254	13C NMR fingerprint characterizes long time-scale structure of Sc3N@C80 endohedral fullerene. Magnetic Resonance in Chemistry, 2004 , 42 Spec no, S199-201	2.1	51
253	(NHCMe)SiCl4: a versatile carbene transfer reagent Bynthesis from silicochloroform. <i>Chemical Science</i> , 2013 , 4, 77-83	9.4	50
252	Room temperature quantum spin Hall states in two-dimensional crystals composed of pentagonal rings and their quantum wells. <i>NPG Asia Materials</i> , 2016 , 8, e264-e264	10.3	49
251	Structure and Electron Delocalization in Al4(2-) and Al4(4.). <i>Journal of Chemical Theory and Computation</i> , 2007 , 3, 775-81	6.4	49
250	Two-dimensional ferroelastic topological insulators in single-layer Janus transition metal dichalcogenides MSSe(M=Mo,W). <i>Physical Review B</i> , 2018 , 98,	3.3	48
249	On the mechanism of hydrogen activation by frustrated Lewis pairs. <i>Chemistry - A European Journal</i> , 2013 , 19, 17413-24	4.8	48
248	Two-dimensional transition metal dichalcogenides with a hexagonal lattice: Room-temperature quantum spin Hall insulators. <i>Physical Review B</i> , 2016 , 93,	3.3	47
247	And yet it rotates: the starter for a molecular Wankel motor. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 10226-7	16.4	47
246	A Tight-Binding Treatment for 13C NMR Spectra of Fullerenes. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 8738-8746	2.8	46
245	CBe5E- (E = Al, Ga, In, Tl): planar pentacoordinate carbon in heptaatomic clusters. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14764-8	3.6	45
244	Defect Healing and Charge Transfer-Mediated Valley Polarization in MoS/MoSe/MoS Trilayer van der Waals Heterostructures. <i>Nano Letters</i> , 2017 , 17, 4130-4136	11.5	44
243	Two-Dimensional Noble-Metal Chalcogenides and Phosphochalcogenides. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9242-9254	16.4	44
242	Ultrathin Layers of PdPX (X=S, Se): Two Dimensional Semiconductors for Photocatalytic Water Splitting. <i>Chemistry - A European Journal</i> , 2017 , 23, 13612-13616	4.8	44
241	Structural and Electronic Properties of Bulk Gibbsite and Gibbsite Surfaces. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2005 , 631, 1267-1271	1.3	44
240	Ab Initio Study of the Adsorption of Small Molecules on Metal-Organic Frameworks with Oxo-centered Trimetallic Building Units: The Role of the Undercoordinated Metal Ion. <i>Inorganic Chemistry</i> , 2015 , 54, 8251-63	5.1	43

239	Stannylene or metallastanna(IV)ocane: a matter of formalism. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 4696-700	16.4	43
238	DFTB Parameters for the Periodic Table, Part 2: Energies and Energy Gradients from Hydrogen to Calcium. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 5209-18	6.4	42
237	Structure, stability and electronic properties of composite Mo1⊠ Nbx S2 nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 1757-1764	1.3	42
236	D5h C50 Fullerene: A Building Block for Oligomers and Solids?. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 11733-11739	2.8	40
235	Topological two-dimensional polymers. <i>Chemical Society Reviews</i> , 2020 , 49, 2007-2019	58.5	39
234	Dianion of Pyrrole-2-N-(o-hydroxyphenyl)carbaldimine as an Interesting Tridentate (ONN) Ligand System in Hypercoordinate Silicon Complexes. <i>Organometallics</i> , 2007 , 26, 234-240	3.8	39
233	Cavitation energies can outperform dispersion interactions. <i>Nature Chemistry</i> , 2018 , 10, 1252-1257	17.6	39
232	Nanotubes With Well-Defined Structure: Single- and Double-Walled Imogolites. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 5945-5953	3.8	37
231	Evidence for Fe(2+) in wurtzite coordination: iron doping stabilizes ZnO nanoparticles. <i>Small</i> , 2011 , 7, 2879-86	11	37
230	Dissolving uptake-hindering surface defects in metal-organic frameworks. <i>Chemical Science</i> , 2019 , 10, 153-160	9.4	36
229	Proximity Effect in Crystalline Framework Materials: Stacking-Induced Functionality in MOFs and COFs. <i>Advanced Functional Materials</i> , 2020 , 30, 1908004	15.6	36
228	Proposed two-dimensional topological insulator in SiTe. <i>Physical Review B</i> , 2016 , 94,	3.3	36
227	NMR Chemical Shifts of Metal Centres in Polyoxometalates: Relativistic DFT Predictions. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 5102-5108	2.3	36
226	Raman spectroscopy studies of the terahertz vibrational modes of a DUT-8 (Ni) metal-organic framework. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 32099-32104	3.6	35
225	Structural properties of metal-organic frameworks within the density-functional based tight-binding method. <i>Physica Status Solidi (B): Basic Research</i> , 2012 , 249, 335-342	1.3	35
224	On the nature of the interaction between H2 and metal-organic frameworks. <i>Theoretical Chemistry Accounts</i> , 2008 , 120, 543-550	1.9	35
223	13C NMR pattern of Sc3N@C68. Structural assignment of the first fullerene with adjacent pentagons. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 7068-72	2.8	35
222	29Si NMR chemical shifts of silane derivatives. <i>Chemical Physics Letters</i> , 2002 , 357, 1-7	2.5	35

(2006-2000)

Nanoindentation of silicon surfaces: Molecular-dynamics simulations of atomic force microscopy. <i>Physical Review B</i> , 2000 , 61, 2973-2980	3.3	35	
Crystal size versus paddle wheel deformability: selective gated adsorption transitions of the switchable metalorganic frameworks DUT-8(Co) and DUT-8(Ni). <i>Journal of Materials Chemistry A</i> , 2019 , 7, 21459-21475	13	34	
Ultrastable Imine-Based Covalent Organic Frameworks for Sulfuric Acid Recovery: An Effect of Interlayer Hydrogen Bonding. <i>Angewandte Chemie</i> , 2018 , 130, 5899-5904	3.6	34	
Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion. <i>Npj 2D Materials and Applications</i> , 2018 , 2,	8.8	34	
Polyoxomolybdodiphosphonates: examples incorporating ethylidenepyridines. <i>Inorganic Chemistry</i> , 2011 , 50, 11667-75	5.1	34	
Stabilisation of pentagon adjacencies in the lower fullerenes by functionalisation. <i>Perkin Transactions II RSC</i> , 2001 , 487-490		34	
The mixed gold-palladium polyoxo-noble-metalate [NaAu(III)4Pd(II)8O8(AsO4)8](11-). <i>Chemistry - A European Journal</i> , 2014 , 20, 8556-60	4.8	33	
Structures, Energetics and Electronic Properties of Complex IIIIV Semiconductor Systems. <i>Physica Status Solidi (B): Basic Research</i> , 2000 , 217, 473-511	1.3	33	
Two-dimensional Pd3P2S8 semiconductors as photocatalysts for the solar-driven oxygen evolution reaction: a theoretical investigation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 23495-23501	13	33	
High-Mobility Semiconducting Two-Dimensional Conjugated Covalent Organic Frameworks with -Type Doping. <i>Journal of the American Chemical Society</i> , 2020 , 142, 21622-21627	16.4	32	
Effect of compression on the electronic, optical and transport properties of MoS 2 /graphene-based junctions. <i>2D Materials</i> , 2016 , 3, 025018	5.9	32	
CO2 reduction at low overpotential on Cu electrodes in the presence of impurities at the subsurface. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 4885-4889	13	32	
Polyoxometallate aus Gold Idas Polyoxoaurat [AuIII4AsV4O20]8[IAngewandte Chemie, 2010 , 122, 1930-1	9333	32	
Structure and dynamics of beta-cyclodextrin in aqueous solution at the density-functional tight binding level. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 5648-54	2.8	32	
On the Stability and Electronic Structure of Transition-Metal Dichalcogenide Monolayer Alloys Mo1 \square XxS2 \square Sey with X = W, Nb. <i>Electronics (Switzerland)</i> , 2016 , 5, 1	2.6	32	
Electron transport in MoWSeS monolayers in the presence of an external electric field. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 11251-5	3.6	31	
Tunable coordinative defects in UHM-3 surface-mounted MOFs for gas adsorption and separation: A combined experimental and theoretical study. <i>Microporous and Mesoporous Materials</i> , 2015 , 207, 53-60	5 ·3	30	
Proton magnetic shielding tensors in benzene-from the individual molecule to the crystal. Angewandte Chemie - International Edition, 2006, 45, 7292-5	16.4	30	
	Crystal size versus paddle wheel deformability: selective gated adsorption transitions of the switchable metallorganic frameworks DUT-8(Co) and DUT-8(Ni). Journal of Materials Chemistry A, 2019, 7, 21459-21475 Ultrastable Imine-Based Covalent Organic Frameworks for Sulfuric Acid Recovery: An Effect of Interlayer Hydrogen Bonding. Angewandte Chemie, 2018, 130, 5899-5904 Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion. Npj 2D Materials and Applications, 2018, 2, Polyoxomolybdodiphosphonates: examples incorporating ethylidenepyridines. Inorganic Chemistry, 2011, 50, 11667-75 Stabilisation of pentagon adjacencies in the lower fullerenes by functionalisation. Perkin Transactions II RSC, 2001, 487-490 The mixed gold-palladium polyoxo-noble-metalate [NaAu(III)4Pd(II)8O8(AsO4)8](11-). Chemistry - A European Journal, 2014, 20, 8556-60 Structures, Energetics and Electronic Properties of Complex IIIIV Semiconductor Systems. Physica Status Solidi (B): Basis Research, 2000, 217, 473-511 Two-dimensional Pd3P2S8 semiconductors as photocatalysts for the solar-driven oxygen evolution reaction: a theoretical investigation. Journal of Materials Chemistry A, 2018, 6, 23495-23501 High-Mobility Semiconducting Two-Dimensional Conjugated Covalent Organic Frameworks with -17ype Doping. Journal of the American Chemical Society, 2020, 142, 21622-21627 Effect of compression on the electronic, optical and transport properties of MoS 2 /graphene-based junctions. 2D Materials; 2016, 3, 025018 CO2 reduction at low overpotential on Cu electrodes in the presence of impurities at the subsurface. Journal of Physical Chemistry A, 2014, 2, 4885-4889 Polyoxometallate aus Gold Idlas Polyoxoaurat [AuIIII4AsV4O20]8ILAngewandte Chemie, 2010, 122, 1930-1 Structure and dynamics of beta-cyclodextrin in aqueous solution at the density-functional tight binding level. Journal of Physical Chemistry A, 2014, 2, 4885-4889 Polyoxometallate aus Gold Idlas Polyoxoaurat [AuIIII4AsV4O20]8ILAngewandte Chemie, 2010, 122,	Crystal size versus paddle wheel deformability: selective gated adsorption transitions of the switchable metaligrapic frameworks DUT-8(Co) and DUT-8(Ni). Journal of Materials Chemistry A, 2019, 7, 21459-21475 Ultrastable Imine-Based Covalent Organic Frameworks for Sulfuric Acid Recovery: An Effect of Interlayer Hydrogen Bonding. Angewandte Chemie, 2018, 130, 5899-5904 Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion. Npj 2D Materials and Applications, 2018, 2, Polyoxomolybdodiphosphonates: examples incorporating ethylidenepyridines. Inorganic Chemistry, 2011, 50, 11667-75 Stabilisation of pentagon adjacencies in the lower fullerenes by functionalisation. Perkin Transactions II RSC, 2001, 487-490 The mixed gold-palladium polyoxo-noble-metalate [NaAu(III)4Pd(II)808(AsO4)8](11-). Chemistry - A European Journal, 2014, 20, 8556-60 Structures, Energetics and Electronic Properties of Complex IIII Semiconductor Systems. Physica Status Solidi (B): Basic Research, 2000, 217, 473-511 Two-dimensional Pd3P2S8 semiconductors as photocatalysts for the solar-driven oxygen evolution reaction: a theoretical investigation. Journal of Materials Chemistry A, 2018, 6, 23495-23501 13 High-Mobility Semiconducting Two-Dimensional Conjugated Covalent Organic Frameworks with -1-type Doping. Journal of the American Chemical Society, 2020, 142, 21622-21627 Effect of compression on the electronic, optical and transport properties of MoS 2 /graphene-based junctions. 2D Materials, 2016, 3, 025018 CO2 reduction at low overpotential on Cu electrodes in the presence of impurities at the subsurface. Journal of Physical Chemistry A, 2014, 2, 4885-4889 Polyoxometallate aus Gold itids Polyoxoaurat [AuIIII4ASV4O20]8IJAngewandte Chemie, 2010, 122, 1930-1933 Structure and dynamics of beta-cyclodextrin in aqueous solution at the density-functional tight binding level. Journal of Physical Chemistry A, 2014, 16, 11251-5 Tunable coordinative defects in UHM-3 surface-mounted MOFs for gas adsorption and separat	Physical Review B, 2000, 61, 2973-2980 33 35 Crystal size versus paddle wheel deformability: selective gated adsorption transitions of the switchable metalBraganic frameworks DUT-8(Co) and DUT-8(NI). Journal of Materials Chemistry A. 2019, 7, 21459-21475 13 34 Ultrastable Imine-Based Covalent Organic Frameworks for Sulfuric Acid Recovery: An Effect of Interlayer Hydrogen Bonding. Angewandte Chemie, 2018, 130, 5899-5904 3.6 34 Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion. Npj 2D Materials and Applications, 2018, 2. 8.8 34 Polyoxomolybdodiphosphonates: examples incorporating ethylidenepyridines. Inorganic Chemistry, 2011, 50, 11667-75 5.1 34 Stabilisation of pentagon adjacencies in the lower fullerenes by functionalisation. Perkin Transactions It RSC, 2001, 487-490 34 The mixed gold-palladium polyoxo-noble-metalate [NaAu(III)4Pd(II)808(AsO4)8](11-). Chemistry-A European Journal, 2014, 20, 8556-60 4.8 33 Structures, Energetics and Electronic Properties of Complex IIII Semiconductor Systems. Physica Status Solid (B): Basic Research, 2000, 217, 473-511 1-3 33 Two-dimensional Pd3P2S8 semiconductors as photocatalysts for the solar-driven oxygen evolution reaction: a theoretical investigation. Journal of Materials Chemistry A, 2018, 6, 23495-23501 13 33 High-Mobility Semiconducting Two-Dimensional Conjugated Covalent Organic Frameworks with Type Diping. Jour

203	Efficient calculation of electronic absorption spectra by means of intensity-selected time-dependent density functional tight binding. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 157-67	6.4	29
202	Hyperdiamond and hyperlonsdaleit: Possible crystalline phases of fullerene C28. <i>Physical Review B</i> , 2005 , 72,	3.3	29
201	Decoding the Morphological Diversity in Two Dimensional Crystalline Porous Polymers by Core Planarity Modulation. <i>Angewandte Chemie</i> , 2016 , 128, 7937-7941	3.6	28
200	A kinetic study on the reduction of CO2 by frustrated Lewis pairs: from understanding to rational design. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 3567-74	3.6	28
199	Mechanism of AlcohollWater Separation in MetallDrganic Frameworks. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 4124-4130	3.8	28
198	Stability and electronic properties of 3D covalent organic frameworks. <i>Journal of Molecular Modeling</i> , 2013 , 19, 2143-8	2	28
197	Dissolution of gallbladder stones with methyl tert-butyl ether and stone recurrence: a European survey. <i>Digestive Diseases and Sciences</i> , 1998 , 43, 911-20	4	28
196	Structural model of arsenic(III) adsorbed on gibbsite based on DFT calculations. <i>Computational and Theoretical Chemistry</i> , 2006 , 762, 17-23		28
195	Competition between Even and Odd Fullerenes: C118, C119, and C120. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 9625-9629	2.8	28
194	Tight-binding approximations to time-dependent density functional theory - A fast approach for the calculation of electronically excited states. <i>Journal of Chemical Physics</i> , 2016 , 144, 184103	3.9	28
193	Conformational isomerism controls collective flexibility in metal-organic framework DUT-8(Ni). <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 674-680	3.6	27
192	Ylenes in the M(II)-Bi(IV) (M=Si, Ge, Sn) coordination mode. <i>Chemistry - A European Journal</i> , 2010 , 16, 13	4 4 9834	27
191	C28 fullerites-structure, electronic properties and intercalates. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 3320-5	3.6	27
190	Ni on the CeO(110) and (100) surfaces: adsorption vs. substitution effects on the electronic and geometric structures and oxygen vacancies. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 11139-49	3.6	27
189	Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. <i>Angewandte Chemie</i> , 2017 , 129, 5064-5068	3.6	26
188	Conduction-band valley spin splitting in single-layer H-Tl2O. <i>Physical Review B</i> , 2018 , 97,	3.3	26
187	Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals. <i>Nature Nanotechnology</i> , 2018 , 13, 468-472	28.7	26
186	Two-dimensional topological insulators in group-11 chalcogenide compounds: M2Te(M=Cu,Ag). <i>Physical Review B</i> , 2016 , 93,	3.3	26

(2005-2015)

Photoinduzierte Erzeugung von Ladungstr\u00e4ern in epitaktischen MOF-D\u00ednschichten: hohe Leistung aufgrund einer indirekten elektronischen Bandl\u00e4ke?. <i>Angewandte Chemie</i> , 2015 , 127, 7549-755	53 ^{.6}	26
The change of aromaticity along a Diels-Alder reaction path. <i>Organic Letters</i> , 2003 , 5, 1127-30	6.2	26
A Combined Pulsed Electron Paramagnetic Resonance Spectroscopic and DFT Analysis of the 13CO2 and 13CO Adsorption on the Metal@rganic Framework Cu2.97Zn0.03(btc)2. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 8231-8240	3.8	25
Pentadienyl Complexes of Alkali Metals: Structure and Bonding Organometallics, 2008, 27, 827-833	3.8	25
Zn -Ion Sensing by Fluorescent Schiff Base Calix[4]arene Macrocycles. <i>Chemistry - A European Journal</i> , 2017 , 23, 3824-3827	4.8	24
Two-Dimensional Haeckelite NbS : A Diamagnetic High-Mobility Semiconductor with Nb Ions. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10214-10218	16.4	24
High-Precision Size Recognition and Separation in Synthetic 1D Nanochannels. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15922-15927	16.4	24
Fe-doped ZnO nanoparticles: the oxidation number and local charge on iron, studied by 57Fe MBauer spectroscopy and DFT calculations. <i>Chemistry - A European Journal</i> , 2013 , 19, 3287-91	4.8	24
From an icosahedron to a plane: flattening dodecaiodo-dodecaborate by successive stripping of iodine. <i>Chemistry - A European Journal</i> , 2012 , 18, 13208-12	4.8	24
Performance of DFT for 29Si NMR Chemical Shifts of Silanes. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 620-626	2.8	24
Hydrogen isotope separation in metal-organic frameworks: Kinetic or chemical affinity quantum-sieving?. <i>Microporous and Mesoporous Materials</i> , 2015 , 216, 133-137	5.3	23
Shielding nanowires and nanotubes with imogolite: a route to nanocables. <i>Advanced Materials</i> , 2009 , 21, 4353-6	24	23
A Pentacoordinate Chlorotrimethylsilane Derivative: A very Polar Snapshot of a Nucleophilic Substitution and its Influence on 29Si Solid State NMR Properties. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2009 , 635, 1300-1305	1.3	23
Modelling the 13C NMR chemical shifts of C84 fullerenes. <i>Chemical Physics Letters</i> , 2000 , 316, 373-380	2.5	23
C36: from dimer to bulk. <i>Solid State Communications</i> , 1999 , 111, 19-22	1.6	23
Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes. <i>Frontiers in Chemistry</i> , 2015 , 3, 2	5	22
Group 14 element-based non-centrosymmetric quantum spin Hall insulators with large bulk gap. <i>Nano Research</i> , 2015 , 8, 3412-3420	10	22
Density-functional-based molecular-dynamics simulations of molten salts. <i>Journal of Chemical Physics</i> , 2005 , 123, 134510	3.9	22
	Leistung aufgrund einer indirekten elektronischen Bandlitke?. Angewandte Chemie, 2015, 127, 7549-755. The change of aromaticity along a Diels-Alder reaction path. Organic Letters, 2003, 5, 1127-30 A Combined Pulsed Electron Paramagnetic Resonance Spectroscopic and DFT Analysis of the 13CO2 and 13CO Adsorption on the MetalDrganic Framework Cu2.97Zn0.03(btc)2. Journal of Physical Chemistry C, 2013, 117, 8231-8240 Pentadienyl Complexes of Alkali Metals: Structure and Bondingli Organometallics, 2008, 27, 827-833 Zn-Ion Sensing by Fluorescent Schiff Base Calix[4]arene Macrocycles. Chemistry - A European Journal, 2017, 23, 3824-3827 Two-Dimensional Haeckelite Nb5: A Diamagnetic High-Mobility Semiconductor with Nb Ions. Angewandte Chemie - International Edition, 2017, 56, 10214-10218 High-Precision Size Recognition and Separation in Synthetic 1D Nanochannels. Angewandte Chemie - International Edition, 2019, 58, 15922-15927 Fe-doped ZnO nanoparticles: the oxidation number and local charge on iron, studied by 57Fe Mbauer spectroscopy and DFT calculations. Chemistry - A European Journal, 2013, 19, 3287-91 From an icosahedron to a plane: flattening dodecaiodo-dodecaborate by successive stripping of iodine. Chemistry - A European Journal, 2012, 18, 13208-12 Performance of DFT for 29Si NMR Chemical Shifts of Silanes. Journal of Physical Chemistry A, 2001, 105, 620-626 Hydrogen isotope separation in metal-organic frameworks: Kinetic or chemical affinity quantum-sieving?. Microporous and Mesaporous Materials, 2015, 216, 133-137 Shielding nanowires and nanotubes with imogolite: a route to nanocables. Advanced Materials, 2009, 21, 4333-6 Modelling the 13C NMR chemical shifts of C84 fullerenes. Chemical Physics Letters, 2000, 316, 373-380 Modelling the 13C NMR chemical shifts of C84 fullerenes. Chemical Physics Letters, 2000, 316, 373-380 Modelling the 13C NMR chemical shifts of C84 fullerenes. Chemical Physics Letters, 2000, 316, 373-380 Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes. Fr	Leistung aufgrund einer indirekten elektronischen Bandlicke?. Angewandte Chemie, 2015, 127, 7549-7553. The change of aromaticity along a Diels-Alder reaction path. Organic Letters, 2003, 5, 1127-30 6.2 A Combined Pulsed Electron Paramagnetic Resonance Spectroscopic and DFT Analysis of the 13CO2 and 13CO Adsorption on the MetalDrganic Framework Cu2.97Zn0.03(btc)2. Journal of Physical Chemistry C, 2013, 117, 8231-8240 Pentadienyl Complexes of Alkali Metals: Structure and Bondingil Organometallics, 2008, 27, 827-833 3.8 Znlon Sensing by Fluorescent Schiff Base Calix[4]arene Macrocycles. Chemistry - A European Journal, 2017, 23, 3824-3827 Two-Dimensional Haeckelite Nb5: A Diamagnetic High-Mobility Semiconductor with Nb Ions. Angewandte Chemie - International Edition, 2017, 56, 10214-10218 High-Precision Size Recognition and Separation in Synthetic 1D Nanochannels. Angewandte Chemie - International Edition, 2019, 58, 15922-15927 Fe-doped ZnO nanoparticles: the oxidation number and local charge on iron, studied by 57Fe MBauer spectroscopy and DFT calculations. Chemistry - A European Journal, 2013, 19, 3287-91 From an icosahedron to a plane: flattening dodecaidod-ododecaborate by successive stripping of iodine. Chemistry - A European Journal, 2012, 18, 13208-12 Ferformance of DFT for 295i NMR Chemical Shifts of Silanes. Journal of Physical Chemistry A, 2001, 28. 105, 620-626 Hydrogen isotope separation in metal-organic frameworks: Kinetic or chemical affinity quantum-sieving?. Microparous and Mesoporous Materials, 2015, 216, 133-137 53 Shielding nanowires and nanotubes with imogolite: a route to nanocables. Advanced Materials, 2009, 21, 4353-6 A Pentacoordinate Chlorotrimethylsilane Derivative: A very Polar Snapshot of a Nucleophilic substitution and its Influence on 295i Solid State NMR Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 1300-1305 Modelling the 13C NMR chemical shifts of C84 fullerenes. Chemical Physics Letters, 2000, 316, 373-380 2.5 C36: from dimer to bulk.

167	Inorganic nanotubes and fullerenes. European Physical Journal D, 2001, 16, 341-343	1.3	22
166	B19Eein aromatischer Wankel-Motor. <i>Angewandte Chemie</i> , 2010 , 122, 5803-5806	3.6	21
165	Edelmetallatschale: Das Polyoxo-6-vanado(V)-7-palladat(II) [Pd7V6O24(OH)2]6[]Angewandte Chemie, 2010 , 122, 7975-7980	3.6	21
164	Efficient Computation of Density-Functional Orbitally Resolved Reactivity Indices. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 11086-11091	2.8	21
163	Structural and energetic parallels between hydrogenated and fluorinated fullerenes: C36X6. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1999 , 707-712		21
162	Self-assembly of endohedral metallofullerenes: a decisive role of cooling gas and metal-carbon bonding. <i>Nanoscale</i> , 2016 , 8, 3796-808	7.7	20
161	Stabilization mechanism of ZnO nanoparticles by Fe doping. <i>Physical Review Letters</i> , 2014 , 112, 106102	7.4	20
160	Hydrogen adsorption in metal-organic frameworks: the role of nuclear quantum effects. <i>Journal of Chemical Physics</i> , 2014 , 141, 064708	3.9	20
159	Mechanical, Electronic, and Adsorption Properties of Porous Aromatic Frameworks. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 22878-22884	3.8	20
158	Physisorption of N2 on graphene platelets: An Ab initio study. <i>International Journal of Quantum Chemistry</i> , 2006 , 106, 1375-1382	2.1	20
157	Are intramolecular frustrated Lewis pairs also intramolecular catalysts? A theoretical study on H2 activation. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 10687-98	3.6	19
156	Opening of an icosahedral boron framework: A combined infrared spectroscopic and computational study. <i>Chemical Physics Letters</i> , 2015 , 625, 48-52	2.5	19
155	Interaction of Biologically Important Organic Molecules with the Unsaturated Copper Centers of the HKUST-1 Metal Drganic Framework: an Ab-Initio Study. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 3024-3032	3.8	19
154	29Si NMR Shielding Tensors in Triphenylsilanes I29Si Solid State NMR Experiments and DFT-IGLO Calculations. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2012 , 638, 935-944	1.3	19
153	2D Honeycomb-Kagome Polymer Tandem as Effective Metal-Free Photocatalysts for Water Splitting. <i>Advanced Materials</i> , 2021 , 33, e2008645	24	19
152	Probing charge transfer characteristics in a donor-acceptor metal-organic framework by Raman spectroelectrochemistry and pressure-dependence studies. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 25772-25779	3.6	19
151	High-Performance 2D p-Type Transistors Based on GaSe Layers: An Ab Initio Study. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600399	6.4	18
150	Bridging the Green Gap: Metal-Organic Framework Heteromultilayers Assembled from Porphyrinic Linkers Identified by Using Computational Screening. <i>Chemistry - A European Journal</i> , 2019 , 25, 7847-78	5 ^{4.8}	18

(2017-2020)

149	Two-Dimensional Boronate Ester Covalent Organic Framework Thin Films with Large Single Crystalline Domains for a Neuromorphic Memory Device. <i>Angewandte Chemie</i> , 2020 , 132, 8295-8301	3.6	18	
148	Pyridine-2-thiolate bridged tin-palladium complexes with Sn(PdN2Cl2), Sn(PdN2S2), Sn(PdN2C2) and Sn(Pd2N4) skeletons. <i>Chemical Communications</i> , 2014 , 50, 5382-4	5.8	18	
147	Car-Parrinello treatment for an approximate density-functional theory method. <i>Journal of Chemical Physics</i> , 2007 , 126, 124103	3.9	18	
146	Valencies of a small fullerene: structures and energetics of C24H2m. <i>Chemical Physics Letters</i> , 1999 , 312, 77-84	2.5	18	
145	Near-atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer. <i>Science Advances</i> , 2020 , 6, eabb5976	14.3	18	
144	Non equilibrium anisotropic excitons in atomically thin ReS 2. 2D Materials, 2019 , 6, 015012	5.9	18	
143	Liquid Exfoliated SnP3 Nanosheets for Very High Areal Capacity Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2002364	21.8	17	
142	Rotational Isomerism, Electronic Structures, and Basicity Properties of "Fully-Reduced" V14-type Heteropolyoxovanadates. <i>Inorganic Chemistry</i> , 2016 , 55, 3777-88	5.1	16	
141	Electromechanical Properties of Small Transition-Metal Dichalcogenide Nanotubes. <i>Inorganics</i> , 2014 , 2, 155-167	2.9	16	
140	Temperature-Mediated Magnetism in Fe-Doped ZnO Semiconductors. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 5338-5342	3.8	16	
139	Hydrogen Physisorption on Carbon Foams upon Inclusion of Many-Body and Quantum Delocalization Effects. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 19543-19553	3.8	16	
138	Untersuchung der Struktur und Dynamik des B13+ mithilfe der Infrarot-Photodissoziationsspektroskopie. <i>Angewandte Chemie</i> , 2017 , 129, 515-519	3.6	15	
137	Platinum-Containing Polyoxometalates: syn- and anti-[Pt(II)2(PW11O39)2](10-) and Formation of the Metal-Metal-Bonded di-Pt(III) Derivatives. <i>Chemistry - A European Journal</i> , 2016 , 22, 5514-9	4.8	15	
136	7-Azaindol-1-yl(organo)silanes and Their PdCl2 Complexes: Pd-Capped Tetrahedral Silicon Coordination Spheres and Paddlewheels with a PdBi Axis. <i>Organometallics</i> , 2014 , 33, 2479-2488	3.8	15	
135	Stannylen oder Metallastanna(IV)-ocan Leine Sache des Formalismus. <i>Angewandte Chemie</i> , 2011 , 123, 4793-4797	3.6	15	
134	Adiabatic corrections to density functional theory energies and wave functions. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 8896-901	2.8	15	
133	Molecular dynamics study of the mechanical and electronic properties of carbon nanotubes. <i>Small</i> , 2005 , 1, 399-402	11	15	
132	Covalent Co-O-V and Sb-N Bonds Enable Polyoxovanadate Charge Control. <i>Inorganic Chemistry</i> , 2017 , 56, 7120-7126	5.1	14	

131	Double Dirac point semimetal in 2D material: Ta 2 Se 3. 2D Materials, 2017, 4, 025111	5.9	14
130	Controlling embedment and surface chemistry of nanoclusters in metal-organic frameworks. <i>Chemical Communications</i> , 2016 , 52, 5175-8	5.8	14
129	The polyoxo-22-palladate(ii), [Na2PdO12(As(V)O4)15(As(V)O3OH)](25-) . <i>Dalton Transactions</i> , 2016 , 45, 2394-8	4.3	14
128	Electromechanical Properties of Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 13936-1	3 9 84	14
127	Influence of Dynamics on the Structure and NMR Chemical Shift of a Zeolite Precursor. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 5728-5732	3.4	14
126	Stone-Wales Defects Cause High Proton Permeability and Isotope Selectivity of Single-Layer Graphene. <i>Advanced Materials</i> , 2020 , 32, e2002442	24	14
125	Two-dimensional crystal CuSBlectronic and structural properties. 2D Materials, 2017, 4, 015041	5.9	13
124	Group 10-group 14 metal complexes [E-TM](IV): the role of the group 14 site as an L, X and Z-type ligand. <i>Dalton Transactions</i> , 2016 , 45, 14252-64	4.3	13
123	Disilicon complexes with two hexacoordinate Si atoms: paddlewheel-shaped isomers with (ClN4)Si-Si(S4 Cl) and (ClN2 S2)Si-Si(S2 N2 Cl) skeletons. <i>Chemistry - A European Journal</i> , 2013 , 19, 14296-303	4.8	13
122	A Distorted Trigonal Antiprismatic Cationic Silicon Complex with Ureato Ligands: Syntheses, Crystal Structures and Solid State 29Si NMR Properties. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 461-467	2.3	13
121	Dynamics of carbon clusters: chemical equilibration of rings and bi-cyclic rings. <i>Chemical Physics Letters</i> , 2002 , 358, 359-367	2.5	13
120	Nuclear magnetic resonance chemical shifts and paramagnetic field modifications in La2CuO4. <i>Physical Review B</i> , 2003 , 67,	3.3	13
119	Photochemical Creation of Covalent Organic 2D Monolayer Objects in Defined Shapes via a Lithographic 2D Polymerization. <i>ACS Nano</i> , 2018 , 12, 11294-11306	16.7	13
118	Making 2D topological polymers a reality. <i>Nature Materials</i> , 2020 , 19, 823-824	27	12
117	Highly Crystalline and Semiconducting Imine-Based Two-Dimensional Polymers Enabled by Interfacial Synthesis. <i>Angewandte Chemie</i> , 2020 , 132, 6084-6092	3.6	12
116	Stacking dependence of carrier transport properties in multilayered black phosphorous. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 075001	1.8	12
115	Structure, Stability, and Infrared Spectrum of Capped Carbon Cones: A DFTB Study. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 24761-24768	3.8	12
114	Surface-Modified Phthalocyanine-Based Two-Dimensional Conjugated Metal-Organic Framework Films for Polarity-Selective Chemiresistive Sensing. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18666-18672	16.4	12

113	Adsorption of water, sulfates and chloride on arsenopyrite surface. <i>Applied Surface Science</i> , 2018 , 434, 389-399	6.7	12
112	Nuclear quantum effects on adsorption of H2 and isotopologues on metal ions. <i>Chemical Physics Letters</i> , 2017 , 670, 64-70	2.5	11
111	Metallophilic Contacts in 2-C6F4PPh2 Bridged Heterobinuclear Complexes: A Crystallographic and Computational Study. <i>Inorganic Chemistry</i> , 2015 , 54, 6947-57	5.1	11
110	Prediction of topological phase transition in X2-SiGe monolayers. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 3669-74	3.6	11
109	Is MoSia robust material for 2D electronics?. <i>Nanotechnology</i> , 2014 , 25, 445201	3.4	11
108	Novel characterization of the adsorption sites in large pore metal-organic frameworks: combination of X-ray powder diffraction and thermal desorption spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 12892-7	3.6	11
107	Influence of quantum effects on the physisorption of molecular hydrogen in model carbon foams. Journal of Chemical Physics, 2011 , 135, 214701	3.9	11
106	Quantized liquid density-functional theory for hydrogen adsorption in nanoporous materials. <i>Physical Review E</i> , 2009 , 80, 031603	2.4	11
105	Evaluation of the adsorption free energy of light guest molecules in nanoporous host structures. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 2697-705	3.6	11
104	Tunable discotic building blocks for liquid crystalline displays. <i>Journal of Luminescence</i> , 2004 , 108, 143-1	1 4,7 8	11
103	The proton nuclear magnetic shielding tensors in biphenyl: experiment and theory. <i>Journal of Magnetic Resonance</i> , 2005 , 175, 52-64	3	11
102	Direct Tensile Tests of Individual WS2 Nanotubes. <i>Materials Science Forum</i> , 2005 , 475-479, 4097-4102	0.4	11
101	Continuous-Wave Single-Crystal Electron Paramagnetic Resonance of Adsorption of Gases to Cupric Ions in the Zn(II)-Doped Porous Coordination Polymer Cu2.965Zn0.035(btc)2. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 27399-27411	3.8	10
100	Mehr als MoS2: zweidimensionale Edelmetalldichalkogenide. <i>Angewandte Chemie</i> , 2014 , 126, 3059-306	23.6	10
99	How Counterions Affect the Solution Structure of Polyoxoaurates: Insights from UV/Vis Spectral Simulations and Electrospray Mass Spectrometry. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 3771-3778	2.3	10
98	Poly(methimazolyl)silanes: Syntheses and Molecular Structures Organometallics, 2010 , 29, 5607-5613	3.8	10
97	13C NMR patterns of C36H2x fullerene hydrides. <i>Chemical Physics Letters</i> , 2002 , 361, 405-410	2.5	10
96	A parallel code for a self-consistent charge density functional based tight binding method: Total energy calculations for extended systems. <i>Computational Materials Science</i> , 1999 , 13, 239-251	3.2	10

95	Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding. <i>Journal of Chemical Physics</i> , 2016 , 145, 184102	3.9	10
94	Linear Chains of Magnetic Ions Stacked with Variable Distance: Ferromagnetic Ordering with a Curie Temperature above 20 K. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12683-7	16.4	10
93	Comprehensive Bonding Analysis of Tetravalent f-Element Complexes of the Type [M(salen)]. <i>Inorganic Chemistry</i> , 2021 , 60, 2514-2525	5.1	10
92	High-Precision Size Recognition and Separation in Synthetic 1D Nanochannels. <i>Angewandte Chemie</i> , 2019 , 131, 16069-16074	3.6	9
91	Explicit treatment of hydrogen bonds in the universal force field: Validation and application for metal-organic frameworks, hydrates, and host-guest complexes. <i>Journal of Chemical Physics</i> , 2017 , 147, 161705	3.9	9
90	On the gas-phase dimerization of negatively charged closo-dodecaborates: a theoretical study. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10358-66	3.6	9
89	13C NMR Patterns of Odd-Numbered C119 Fullerenes. Journal of Physical Chemistry A, 2000 , 104, 3865-	-328868	9
88	Isomers of C70 Dimer. Journal of Physical Chemistry A, 2001, 105, 1140-1143	2.8	9
87	Half-Auxeticity and Anisotropic Transport in Pd Decorated Two-Dimensional Boron Sheets. <i>Nano Letters</i> , 2021 , 21, 2356-2362	11.5	9
86	Chirality Remote Control in Nanoporous Materials by Circularly Polarized Light. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7059-7068	16.4	9
85	Raman spectroscopy of intercalated and misfit layer nanotubes. <i>Physical Review B</i> , 2016 , 94,	3.3	8
84	Detailed atomistic investigation of Fe-doped rutile phases. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 5742-8	2.8	8
83	Aromaticity Indices from Magnetic Shieldings 2004 , 395-407		8
82	Grand Challenges in Computational Materials Science: From Description to Prediction at all Scales. <i>Frontiers in Materials</i> , 2014 , 1,	4	7
81	Efficient Quantum Simulations of Metals within the Point Approximation: Application to Carbon and Inorganic 1D and 2D Materials. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 2888-95	6.4	7
80	₱dBi2 monolayer: two-dimensional topological metal with superior catalytic activity for carbon dioxide electroreduction to formic acid. <i>Materials Today Advances</i> , 2020 , 8, 100091	7.4	7
79	Fragment-Based Restricted Active Space Configuration Interaction with Second-Order Corrections Embedded in Periodic Hartree-Fock Wave Function. <i>Journal of Chemical Theory and Computation</i> , 2020 , 16, 7100-7108	6.4	7
78	Blue Phosphorene Bilayer Is a Two-Dimensional Metal and an Unambiguous Classification Scheme for Buckled Hexagonal Bilayers. <i>Physical Review Letters</i> , 2020 , 125, 196401	7.4	7

(2006-2021)

77	Oriented Growth of In-Oxo Chain Based Metal-Porphyrin Framework Thin Film for High-Sensitive Photodetector. <i>Advanced Science</i> , 2021 , 8, 2100548	13.6	7
76	Spin polarization in SCC-DFTB. <i>Theoretical Chemistry Accounts</i> , 2016 , 135, 1	1.9	7
75	Understanding the Central Location of a Hexagonal Hole in a B Cluster. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 3220-3224	4.5	7
74	Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation. <i>Solid State Communications</i> , 2018 , 272, 22-27	1.6	6
73	Exploring hostguest complexation mechanisms by a molecular dynamics/quantum mechanics/continuum solvent model approach. <i>Chemical Physics Letters</i> , 2016 , 648, 170-177	2.5	6
72	Oxidation Mechanism of Arsenopyrite in the Presence of Water. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 26887-26894	3.8	6
71	Ein Anlasser filden molekularen Wankelmotor. <i>Angewandte Chemie</i> , 2012 , 124, 10372-10373	3.6	6
70	Niobium-chloride octahedral clusters as building units for larger frameworks. <i>Structural Chemistry</i> , 2012 , 23, 1357-1367	1.8	6
69	Orbital hardness tensors from hydrogen through xenon from KohnBham perturbed orbitals. <i>International Journal of Quantum Chemistry</i> , 2006 , 106, 1396-1405	2.1	6
68	Interfacial Synthesis of Layer-Oriented 2D Conjugated Metal-Organic Framework Films toward Directional Charge Transport. <i>Journal of the American Chemical Society</i> , 2021 , 143, 13624-13632	16.4	6
67	Rational Design of Two-Dimensional Binary Polymers from Heterotriangulenes for Photocatalytic Water Splitting. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 8134-8140	6.4	6
66	Direct and cluster-assisted dehydrogenation of methane by Nb and Ta: a theoretical investigation. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 16178-16188	3.6	5
65	Electronic structure and oxygen reduction on tunable [Ti(IV)Pc]2+ and Ti(II)Pc titanyl-phthalocyanines: A quantum chemical prediction. <i>Computational Materials Science</i> , 2017 , 129, 24-36	3.2	5
64	London Dispersion Governs the Interaction Mechanism of Small Polar and Nonpolar Molecules in Metal Drganic Frameworks. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 11985-11989	3.8	5
63	The importance of dynamics studies on the design of sandwich structures: a CrB24 case. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 18336-41	3.6	5
62	A Ligand Field Molecular Mechanics Study of CO2-Induced Breathing in the Metal©rganic Framework DUT-8(Ni). <i>Advanced Theory and Simulations</i> , 2019 , 2, 1900098	3.5	5
61	Hexagonal transition-metal chalcogenide nanoflakes with pronounced lateral quantum confinement. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12624-8	16.4	5
60	Theoretical study of the propagation barrier of ethylene polymerization with TiR2 (R=OCH3 or CN): The importance of the 軸gostic interactions. <i>Computational and Theoretical Chemistry</i> , 2006 , 762, 9-15		5

59	DFT IB Ia unified quantum-mechanical hybrid method. Theoretical Chemistry Accounts, 2005, 114, 68-75	5 1.9	5
58	Enhancement of basal plane electrocatalytic hydrogen evolution activity via joint utilization of trivial and non-trivial surface states. <i>Applied Materials Today</i> , 2021 , 22, 100921	6.6	5
57	Formation of heterobinuclear PtAu complexes by chelate ring-opening of cis-[Pt(I-C6R4PPh2)2] (RI=IH, F). <i>Journal of Organometallic Chemistry</i> , 2015 , 783, 130-134	2.3	4
56	Benchmark of Simplified Time-Dependent Density Functional Theory for UVIV is Spectral Properties of Porphyrinoids. <i>Advanced Theory and Simulations</i> , 2020 , 3, 1900192	3.5	4
55	Artificial relativistic molecules. <i>Nature Communications</i> , 2020 , 11, 815	17.4	4
54	Toward separation of hydrogen isotopologues by exploiting zero-point energy difference at strongly attractive adsorption site models. <i>International Journal of Quantum Chemistry</i> , 2018 , 118, e255	545 ¹	4
53	Grand-canonical quantized liquid density-functional theory in a Car-Parrinello implementation. <i>Journal of Chemical Physics</i> , 2013 , 139, 034110	3.9	4
52	Noble-Metal Chalcogenide Nanotubes. <i>Inorganics</i> , 2014 , 2, 556-564	2.9	4
51	Magnetische Abschirmtensoren der Protonen in Benzol Dom Einzelmoleklzum Kristall. <i>Angewandte Chemie</i> , 2006 , 118, 7450-7454	3.6	4
50	A memory nanodevice based on Zn-MOF-74: a molecular dynamics study. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 1567-1570	7.1	4
49	2D Crystals in Three Dimensions: Electronic Decoupling of Single-Layered Platelets in Colloidal Nanoparticles. <i>Small</i> , 2018 , 14, e1803910	11	4
48	Isotope-selective pore opening in a flexible metal-organic framework Science Advances, 2022, 8, eabn	70:3453	4
47	Dynamics of the OH stretching mode in crystalline Ba(ClO)BHO. <i>Journal of Chemical Physics</i> , 2018 , 148, 054307	3.9	3
46	Was ist die h⊞hste Koordinationszahl in einer ebenen Struktur?. <i>Angewandte Chemie</i> , 2012 , 124, 4349-4	3 <u>5</u> ,6⁄6	3
45	Mechanical Properties of Individual WS2 Nanotubes. AIP Conference Proceedings, 2004,	Ο	3
44	Strong Binding of Noble Gases to [BX]: A Theoretical Study. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 4760-4765	2.8	3
43	Lithium-Assisted Exfoliation of Palladium Thiophosphate Nanosheets for Photoelectrocatalytic Water Splitting. <i>ACS Applied Nano Materials</i> , 2021 , 4, 441-448	5.6	3
42	The effects of halogen elements on the opening of an icosahedral B framework. <i>Journal of Chemical Physics</i> , 2017 , 147, 144302	3.9	2

(2010-2020)

41	Small Crown-Ether Complexes as Molecular Models for Dihydrogen Adsorption in Undercoordinated Extraframework Cations in Zeolites. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 9409	9- <i>9</i> 415	2
40	Zweidimensionale Edelmetallchalkogenide und -phosphochalkogenide. <i>Angewandte Chemie</i> , 2020 , 132, 9328-9341	3.6	2
39	Chiral Dodecanuclear Palladium(II) Thio Cluster: Synthesis, Structure, and Formation Mechanism Explored by ESI-MS and DFT Calculations. <i>Inorganic Chemistry</i> , 2016 , 55, 7811-3	5.1	2
38	Density-functional-based tight-binding parameterization of Mo, C, H, O and Si for studying hydrogenation reactions on molybdenum carbide. <i>Theoretical Chemistry Accounts</i> , 2016 , 135, 1	1.9	2
37	On the Chemistry and Diffusion of Hydrogen in the Interstitial Space of Layered Crystals h-BN, MoS , and Graphite. <i>Small</i> , 2019 , 15, e1901722	11	2
36	Transition Metal Monolayers: Spontaneous Ripple Formation in MoS2 Monolayers: Electronic Structure and Transport Effects (Adv. Mater. 38/2013). <i>Advanced Materials</i> , 2013 , 25, 5366-5366	24	2
35	Hexagon Preserving Carbon Nanofoams. Carbon Materials, 2010, 57-77		2
34	Wrapping carbon nanotubes with DNA: A theoretical study. AIP Conference Proceedings, 2005,	O	2
33	The encapsulation of trimetallic nitride clusters in fullerene cages. <i>AIP Conference Proceedings</i> , 2000 ,	O	2
22			
32	Novel carbon materials can store and sieve hydrogen. SPIE Newsroom, 2007,		2
31	Novel carbon materials can store and sieve hydrogen. <i>SPIE Newsroom</i> , 2007 , A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13859-13864	16.4	
	A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge	16.4 3.6	
31	A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13859-13864 A Nitrogen-Rich 2D sp2-Carbon-Linked Conjugated Polymer Framework as a High-Performance	ŕ	2
31	A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13859-13864 A Nitrogen-Rich 2D sp2-Carbon-Linked Conjugated Polymer Framework as a High-Performance Cathode for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2018 , 131, 859 Statistical Representation of Stacking Disorder in Layered Covalent Organic Frameworks. <i>Chemistry</i>	3.6	2
31 30 29	A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13859-13864 A Nitrogen-Rich 2D sp2-Carbon-Linked Conjugated Polymer Framework as a High-Performance Cathode for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2018 , 131, 859 Statistical Representation of Stacking Disorder in Layered Covalent Organic Frameworks. <i>Chemistry of Materials</i> , 2022 , 34, 2376-2381 Analytical approach to phonon calculations in the SCC-DFTB framework. <i>Journal of Chemical Physics</i>	3.6 9.6	2 2 2
31 30 29 28	A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13859-13864 A Nitrogen-Rich 2D sp2-Carbon-Linked Conjugated Polymer Framework as a High-Performance Cathode for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2018 , 131, 859 Statistical Representation of Stacking Disorder in Layered Covalent Organic Frameworks. <i>Chemistry of Materials</i> , 2022 , 34, 2376-2381 Analytical approach to phonon calculations in the SCC-DFTB framework. <i>Journal of Chemical Physics</i> , 2020 , 153, 144109 Hexagonale Bergangsmetallchalkogenid-Nanoflocken mit ausgepr\(\bar{g}\)tem lateralen	3.6 9.6 3.9	2 2 1
31 30 29 28 27	A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 13859-13864 A Nitrogen-Rich 2D sp2-Carbon-Linked Conjugated Polymer Framework as a High-Performance Cathode for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2018 , 131, 859 Statistical Representation of Stacking Disorder in Layered Covalent Organic Frameworks. <i>Chemistry of Materials</i> , 2022 , 34, 2376-2381 Analytical approach to phonon calculations in the SCC-DFTB framework. <i>Journal of Chemical Physics</i> , 2020 , 153, 144109 Hexagonale Bergangsmetallchalkogenid-Nanoflocken mit ausgepr\(\overline{g}\)tem lateralen Quanten-Confinement. <i>Angewandte Chemie</i> , 2014 , 126, 12833-12837	3.6 9.6 3.9	2 2 2 1

23	Hydrogen Storage by Physisorption on Nanostructured Graphite Platelets ChemInform, 2004, 35, no		1
22	Semiempirical Methods for the Calculation of NMR Chemical Shifts 2004 , 141-152		1
21	A perfect match between borophene and aluminium in the AlB heterostructure with covalent Al-B bonds, multiple Dirac points and a high Fermi velocity <i>Chemical Science</i> , 2022 , 13, 1016-1022	9.4	1
20	On-Surface Formation of Cyano-Vinylene Linked Chains by Knoevenagel Condensation. <i>Chemistry - A European Journal</i> , 2021 , 27, 17336-17340	4.8	1
19	Variable van der Waals Radii Derived From a Hybrid Gaussian Charge Distribution Model for Continuum-Solvent Electrostatic Calculations. <i>Zeitschrift Fur Physikalische Chemie</i> , 2016 , 230,	3.1	1
18	Investigation of CO Orientational Dynamics through Simulated NMR Line Shapes*. <i>ChemPhysChem</i> , 2021 , 22, 2336-2341	3.2	1
17	Hierarchical Assembly and Sensing Activity of Patterned Graphene-Hamilton Receptor Nanostructures. <i>Advanced Materials Interfaces</i> ,2200425	4.6	1
16	London Dispersion-Corrected Density Functionals Applied to van der Waals Stacked Layered Materials: Validation of Structure, Energy, and Electronic Properties. <i>Advanced Theory and Simulations</i> ,2200055	3.5	1
15	Calculation of 29Si Chemical Shifts Using a Density-Functional Based Tight-Binding Scheme324-328		0
14	Fullerenes 2004 , 409-420		O
14	Fullerenes 2004, 409-420 Surface-Modified Phthalocyanine-Based Two-Dimensional Conjugated Metal®rganic Framework Films for Polarity-Selective Chemiresistive Sensing. <i>Angewandte Chemie</i> , 2021, 133, 18814-18820	3.6	0
	Surface-Modified Phthalocyanine-Based Two-Dimensional Conjugated Metal D rganic Framework		
13	Surface-Modified Phthalocyanine-Based Two-Dimensional Conjugated Metal®rganic Framework Films for Polarity-Selective Chemiresistive Sensing. <i>Angewandte Chemie</i> , 2021 , 133, 18814-18820 Stacking Polymorphism in PtSe 2 Drastically Affects Its Electromechanical Properties. <i>Advanced</i>		0
13	Surface-Modified Phthalocyanine-Based Two-Dimensional Conjugated Metal®rganic Framework Films for Polarity-Selective Chemiresistive Sensing. <i>Angewandte Chemie</i> , 2021 , 133, 18814-18820 Stacking Polymorphism in PtSe 2 Drastically Affects Its Electromechanical Properties. <i>Advanced Science</i> , 2201272 Zweidimensionales Haeckelit-NbS2 Ièin diamagnetischer Halbleiter mit Nb4+-Ionen und hoher	13.6	0
13 12 11	Surface-Modified Phthalocyanine-Based Two-Dimensional Conjugated Metal®rganic Framework Films for Polarity-Selective Chemiresistive Sensing. <i>Angewandte Chemie</i> , 2021 , 133, 18814-18820 Stacking Polymorphism in PtSe 2 Drastically Affects Its Electromechanical Properties. <i>Advanced Science</i> , 2201272 Zweidimensionales Haeckelit-NbS2 & diamagnetischer Halbleiter mit Nb4+-Ionen und hoher Ladungstr germobilit Angewandte Chemie, 2017 , 129, 10348-10352 The Chemical Bond. Zwei B geden der Germot Frenking und Sason Shaik	13.6 3.6	0
13 12 11	Surface-Modified Phthalocyanine-Based Two-Dimensional Conjugated Metal@rganic Framework Films for Polarity-Selective Chemiresistive Sensing. <i>Angewandte Chemie</i> , 2021 , 133, 18814-18820 Stacking Polymorphism in PtSe 2 Drastically Affects Its Electromechanical Properties. <i>Advanced Science</i> , 2201272 Zweidimensionales Haeckelit-NbS2 Ibin diamagnetischer Halbleiter mit Nb4+-Ionen und hoher Ladungstrigermobiliti. <i>Angewandte Chemie</i> , 2017 , 129, 10348-10352 The Chemical Bond. Zwei Bilde. Herausgegeben von Gernot Frenking und Sason Shaik <i>Angewandte Chemie</i> , 2015 , 127, 3621-3623 Chemical speciation of metal complexes from chemical shift calculations: the interaction of 2-amino-N-hydroxypropanamide with V(V) in aqueous solution. <i>Journal of Physical Chemistry B</i> ,	13.6 3.6 3.6	0
13 12 11 10	Surface-Modified Phthalocyanine-Based Two-Dimensional Conjugated Metal®rganic Framework Films for Polarity-Selective Chemiresistive Sensing. <i>Angewandte Chemie</i> , 2021 , 133, 18814-18820 Stacking Polymorphism in PtSe 2 Drastically Affects Its Electromechanical Properties. <i>Advanced Science</i> ,2201272 Zweidimensionales Haeckelit-NbS2 & in diamagnetischer Halbleiter mit Nb4+-Ionen und hoher Ladungstr germobilit Angewandte Chemie, 2017 , 129, 10348-10352 The Chemical Bond. Zwei B B B B B Chemical Speciation of metal complexes from chemical shift calculations: the interaction of 2-amino-N-hydroxypropanamide with V(V) in aqueous solution. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 11670-80 Absolutely Small. How Quantum Theory Explains Our Everyday World. Von Michael D. Fayer	3.6 3.6 3.4	0

LIST OF PUBLICATIONS

5	42. Symposium f Theoretische Chemie. <i>Nachrichten Aus Der Chemie</i> , 2006 , 54, 1246-1246	0.1
4	Calculation of 29Si Chemical Shifts Using a Density-Functional Based Tight-Binding Scheme324-328	
3	A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer. <i>Angewandte Chemie</i> , 2021 , 133, 13978-13983	3.6
2	Mit variablem Abstand gestapelte lineare Ketten magnetischer Ionen: ferromagnetische Ordnung mit einer Curie-Temperatur von B er 20 K. <i>Angewandte Chemie</i> , 2016 , 128, 12874-12879	3.6
1	BX(H): exploring the limits of isotopologue selectivity of hydrogen adsorption <i>RSC Advances</i> , 2021 , 11, 28466-28475	3.7