
Nicole M Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/831987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A scalable, fully automated approach for regional quantification of immunohistochemical staining of astrocytes in the rat brain. Journal of Neuroscience Methods, 2021, 348, 108994.	2.5	13
2	Hippocampal silent infarct leads to subtle cognitive decline that is associated with inflammation and gliosis at twenty-four hours after injury in a rat model. Behavioural Brain Research, 2021, 401, 113089.	2.2	4
3	Hypercapniaâ€evoked Chronic Stress Alters ILâ€1β Levels in Brain Respiratory Chemoreceptor Regions. FASEB Journal, 2021, 35, .	0.5	0
4	Discovery of neuroprotective agents that inhibit human prolyl hydroxylase PHD2. Bioorganic and Medicinal Chemistry, 2021, 38, 116115.	3.0	4
5	The selective estrogen receptor modulator tamoxifen protects against subtle cognitive decline and early markers of injury 24Âh after hippocampal silent infarct in male Sprague-Dawley rats. Hormones and Behavior, 2021, 134, 105016.	2.1	5
6	Tamoxifen offers long-term neuroprotection after hippocampal silent infarct in male rats. Hormones and Behavior, 2021, 136, 105085.	2.1	2
7	The N-terminus of GPR37L1 is proteolytically processed by matrix metalloproteases. Scientific Reports, 2020, 10, 19995.	3.3	7
8	Human Umbilical Cord Therapy Improves Long-Term Behavioral Outcomes Following Neonatal Hypoxic Ischemic Brain Injury. Frontiers in Physiology, 2019, 10, 283.	2.8	27
9	Effects of umbilical cord blood cells, and subtypes, to reduce neuroinflammation following perinatal hypoxic-ischemic brain injury. Journal of Neuroinflammation, 2018, 15, 47.	7.2	74
10	Hypoxic postconditioning enhances functional recovery following endothelin-1 induced middle cerebral artery occlusion in conscious rats. Experimental Neurology, 2018, 306, 177-189.	4.1	7
11	The neuroprotective effect of desferrioxamine is mediated by hypoxia-inducible factor-1 (HIF-1) in rat organotypic hippocampal slices. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-1-58.	0.0	0
12	The Teacher-Student Journey: Program-Wide Teamwork Skills Development and Evaluation in the Medical Sciences. International Journal of Assessment and Evaluation, 2018, 24, 1-24.	0.2	0
13	Hypoxic postconditioning improves behavioural deficits at 6 weeks following hypoxic-ischemic brain injury in neonatal rats. Behavioural Brain Research, 2017, 333, 27-34.	2.2	7
14	Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats. Brain, Behavior, and Immunity, 2017, 63, 186-196.	4.1	30
15	Maternal L-Carnitine Supplementation Improves Brain Health in Offspring from Cigarette Smoke Exposed Mothers. Frontiers in Molecular Neuroscience, 2017, 10, 33.	2.9	23
16	Maternal Cigarette Smoke Exposure Worsens Neurological Outcomes in Adolescent Offspring with Hypoxic-Ischemic Injury. Frontiers in Molecular Neuroscience, 2017, 10, 306.	2.9	22
17	ePortfolios, Assessment and Professional Skills in the Medical Sciences. , 2017, , 47-64.		2
18	Impact of maternal cigarette smoke exposure on brain inflammation and oxidative stress in male mice offspring. Scientific Reports, 2016, 6, 25881.	3.3	60

NICOLE M JONES

#	Article	IF	CITATIONS
19	Impact of maternal cigarette smoke exposure on brain and kidney health outcomes in female offspring. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 1168-1176.	1.9	16
20	Metalloprotease cleavage of the N terminus of the orphan G protein–coupled receptor GPR37L1 reduces its constitutive activity. Science Signaling, 2016, 9, ra36.	3.6	31
21	Synthesis and neuroprotective activity of dictyoquinazol A and analogues. Bioorganic and Medicinal Chemistry, 2016, 24, 1480-1487.	3.0	9
22	Changes in Hypoxia-Inducible Factor-1 (HIF-1) and Regulatory Prolyl Hydroxylase (PHD) Enzymes Following Hypoxic–Ischemic Injury in the Neonatal Rat. Neurochemical Research, 2016, 41, 515-522.	3.3	20
23	ISA Model and Integrative Career Development Learning in Year Three Science Courses. International Journal of Science, Mathematics and Technology Learning, 2016, 23, 33-49.	0.2	0
24	Hypoxic postconditioning reduces microglial activation, astrocyte and caspase activity, and inflammatory markers after hypoxia–ischemia in the neonatal rat brain. Pediatric Research, 2015, 77, 757-764.	2.3	31
25	Hypoxic preconditioning can reduce injuryâ€induced inflammatory processes in the neonatal rat brain. International Journal of Developmental Neuroscience, 2015, 43, 35-42.	1.6	19
26	The effects of hypoxic preconditioning on white matter damage following hypoxicâ€ischaemic injury in the neonatal rat brain. International Journal of Developmental Neuroscience, 2014, 37, 69-75.	1.6	18
27	The neuroprotective actions of hypoxic preconditioning and postconditioning in a neonatal rat model of hypoxic–ischemic brain injury. Brain Research, 2013, 1498, 1-8.	2.2	34
28	Preconditioning and Neuroprotection in the Immature Brain. , 2013, , 259-268.		0
29	Preconditioning protects against oxidative injury involving hypoxia-inducible factor-1 and vascular endothelial growth factor in cultured astrocytes. European Journal of Pharmacology, 2010, 633, 24-32.	3.5	37
30	Long-Term Functional and Protective Actions of Preconditioning With Hypoxia, Cobalt Chloride, and Desferrioxamine Against Hypoxic-Ischemic Injury in Neonatal Rats. Pediatric Research, 2008, 63, 620-624.	2.3	51
31	Inflammatory Cell Infiltration after Endothelin-1-Induced Cerebral Ischemia: Histochemical and Myeloperoxidase Correlation with Temporal Changes in Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 100-114.	4.3	129
32	Effects of lipopolysaccharide on glial phenotype and activity of glutamate transporters: Evidence for delayed up-regulation and redistribution of GLT-1. Neurochemistry International, 2006, 48, 604-610.	3.8	55
33	Hypoxic preconditioning produces differential expression of hypoxia-inducible factor-1α (HIF-1α) and its regulatory enzyme HIF prolyl hydroxylase 2 in neonatal rat brain. Neuroscience Letters, 2006, 404, 72-77.	2.1	41
34	The Effects of Estradiol on Estrogen Receptor and Glutamate Transporter Expression in Organotypic Hippocampal Cultures Exposed to OxygenGlucose Deprivation. Neurochemical Research, 2006, 31, 483-490.	3.3	26
35	Injury to axons and oligodendrocytes following endothelin-1-induced middle cerebral artery occlusion in conscious rats. Brain Research, 2006, 1110, 13-22.	2.2	36
36	Hypoxic preconditioning in neonatal rat brain involves regulation of excitatory amino acid transporter 2 and estrogen receptor alpha. Neuroscience Letters, 2005, 385, 52-57.	2.1	43

NICOLE M JONES

#	ARTICLE	IF	CITATIONS
37	Hypoxic preconditioning increases expression of HIF prolyl hydroxylase 2 (Egln1) in neonatal rat brain. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S312-S312.	4.3	0
38	Hypoxiaâ€induced ischemic tolerance in neonatal rat brain involves enhanced ERK1/2 signaling. Journal of Neurochemistry, 2004, 89, 157-167.	3.9	91
39	Hypoxic Preconditioning Induces Changes in HIF-1 Target Genes in Neonatal Rat Brain. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1105-1114.	4.3	209
40	Direct visualization of cholecystokinin subtype2 receptors in rat central nervous system using anti-peptide antibodies. Neuroscience Letters, 2000, 293, 167-170.	2.1	62
41	Type I and II metabotropic glutamate receptor agonists and antagonists evoke cardiovascular effects after intrathecal administration in conscious rats. British Journal of Pharmacology, 1999, 128, 823-829.	5.4	10
42	Type I and II metabotropic glutamate receptors mediate depressor and bradycardic actions in the nucleus of the solitary tract of anaesthetized rats. European Journal of Pharmacology, 1999, 380, 129-135.	3.5	9
43	Type I and II metabotropic glutamate receptors regulate the outflow of []d-aspartate and []l³-aminobutyric acid in rat solitary nucleus. European Journal of Pharmacology, 1998, 353, 43-51.	3.5	15
44	In vivo microdialysis reveals facilitatory metabotropic glutamate receptors regulating excitatory amino acid release in rat nucleus tractus solitarius. Neurochemistry International, 1998, 32, 31-38.	3.8	22
45	Complex involvement of nitric oxide and cGMP at N-methyl-d-aspartic acid receptors regulating γ-[3H]aminobutyric acid release from striatal slices. Neuroscience Letters, 1995, 190, 195-198.	2.1	24
46	Roles for Nitric Oxide as an Intra―and Interneuronal Messenger at NMDA Releaseâ€Regulating Receptors: Evidence from Studies of the NMDAâ€Evoked Release of [³ H]Noradrenaline and <scp>d</scp> â€[³ H]Aspartate from Rat Hippocampal Slices. Journal of Neurochemistry, 1995, 64, 2057-2063.	3.9	36
47	Diverse roles for nitric oxide in synaptic signalling after activation of NMDA release-regulating receptors. Neuropharmacology, 1994, 33, 1351-1356.	4.1	25
48	The prolyl hydroxylase inhibitor GSK1120360A reduces early brain injury, but protection is not maintained in a neonatal rat model of hypoxic ischaemic encephalopathy. International Journal of Developmental Neuroscience, 0, , .	1.6	0