Karsten Rottwitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/831980/publications.pdf Version: 2024-02-01

		218677	155660
218	3,723	26	55
papers	citations	h-index	g-index
221	221	221	2227
221	221	221	3327
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Compact low-birefringence polarization beam splitter using vertical-dual-slot waveguides in silicon carbide integrated platforms. Photonics Research, 2022, 10, A8.	7.0	23
2	Broadband air-clad LP ₀₂ mode converter using a tapered mode transition. Optics Letters, 2022, 47, 38.	3.3	4
3	Electrooptic control of the modal distribution in a silicate fiber. Optics Express, 2022, 30, 12474.	3.4	0
4	A Converter for Transmission With Singlemode Performance on OM2/3/4/5 Multimode Fibers. IEEE Photonics Technology Letters, 2022, 34, 571-574.	2.5	1
5	Characterization of few mode fiber components and connected systems. Optics Express, 2021, 29, 1140.	3.4	1
6	Path-encoded high-dimensional quantum communication over a 2-km multicore fiber. Npj Quantum Information, 2021, 7, .	6.7	24
7	Toward Fullyâ€Fledged Quantum and Classical Communication Over Deployed Fiber with Upâ€Conversion Module. Advanced Quantum Technologies, 2021, 4, 2000156.	3.9	3
8	Polarization and spatial mode dependent four-wave mixing in a 4H-silicon carbide microring resonator. APL Photonics, 2021, 6, .	5.7	19
9	Mode Division Multiplexing on Standard 50/125 µm Multi Mode Fiber using Photonic Lanterns. , 2021, , .		5
10	Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nature Physics, 2020, 16, 148-153.	16.7	163
11	Stable Excitation of Orbital Angular Momentum States in Air-Core Fiber Seeded by an Integrated Optical Vortex Beam Emitter. IEEE Photonics Journal, 2020, 12, 1-8.	2.0	0
12	MDM Transmission Using Air-Clad Photonic Lanterns. IEEE Photonics Technology Letters, 2020, 32, 1049-1052.	2.5	3
13	Modeling of MIMO Less Mode Division Multiplexed Systems. IEEE Photonics Technology Letters, 2020, 32, 1191-1194.	2.5	9
14	Quantum Communication with Orbital Angular Momentum. , 2020, , .		3
15	Stable Transmission of High-Dimensional Quantum States Over a 2-km Multicore Fiber. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-8.	2.9	25
16	Cross Talk and Interference in MIMO less Few Mode Transmission Systems. , 2020, , .		0
17	Integrated Quantum Photonics on Silicon Platform. , 2020, , .		2
18	Intermodal Raman Scattering between Orbital Angular Momentum Modes in Optical Fibers. , 2020, , .		0

#	Article	IF	CITATIONS
19	Invited paper: Characterization of few mode fibers and devices. Optical Fiber Technology, 2019, 52, 101972.	2.7	18
20	Orbital Angular Momentum States Enabling Fiber-based High-dimensional Quantum Communication. Physical Review Applied, 2019, 11, .	3.8	128
21	Generation and sampling of quantum states of light in a silicon chip. Nature Physics, 2019, 15, 925-929.	16.7	148
22	Kilowatt-Level Parametric Wavelength Exchange using OAM Modes. , 2019, , .		0
23	Photon-Pair Parasites: Menace or Nuisance?. , 2019, , .		0
24	Multichannel Photon-Pair Generation with Strong and Uniform Spectral Correlation in a Silicon Microring Resonator. Physical Review Applied, 2019, 12, .	3.8	14
25	Effects of higher-order dispersion on photon-pair generation by four-wave mixing. Physical Review A, 2019, 99, .	2.5	3
26	Inter-modal Raman amplification of OAM fiber modes. APL Photonics, 2019, 4, .	5.7	14
27	Unidirectional frequency conversion in microring resonators for on-chip frequency-multiplexed single-photon sources. New Journal of Physics, 2019, 21, 033037.	2.9	15
28	Boosting the secret key rate in a shared quantum and classical fibre communication system. Communications Physics, 2019, 2, .	5.3	48
29	High-Dimensional Quantum Communication Using Space Encoding. , 2019, , .		0
30	Quantum Information Processing Using Intermodal Four-Wave Mixing in Multi-Mode Optical Fibers. , 2019, , .		1
31	Complete evolution equation for the joint amplitude in photon-pair generation through spontaneous four-wave mixing. Physical Review A, 2019, 100, .	2.5	7
32	Air-cladded mode-group selective photonic lanterns for mode-division multiplexing. Optics Express, 2019, 27, 13329.	3.4	19
33	Hong–Ou–Mandel interference between independent Ill–V on silicon waveguide integrated lasers. Optics Letters, 2019, 44, 271.	3.3	31
34	Direct Measurement of Polarization Dependency of Mode Conversion in a Long Period Grating. , 2019, ,		0
35	Four-wave mixing in orbital angular momentum modes. , 2019, , .		1
36	Silicon photonics for quantum information technologies. , 2019, , .		0

#	Article	IF	CITATIONS
37	Polarization Dependence of Mode-Group Selective Air-Clad Photonic Lantern. , 2019, , .		1
38	SLM phase mask optimization for fiber OAM mode excitation. , 2019, , .		0
39	Fiber-based high-dimensional quantum communications. , 2019, , .		0
40	Multidimensional quantum entanglement with large-scale integrated optics. Science, 2018, 360, 285-291.	12.6	554
41	Experimentally Validated Dispersion Tailoring in a Silicon Strip Waveguide With Alumina Thin-Film Coating. IEEE Photonics Journal, 2018, 10, 1-8.	2.0	3
42	Feasibility of Quantum Communications in Aquatic Scenario. , 2018, , .		3
43	Free-Space Few-Mode Kramers-Kronig Receiver. , 2018, , .		0
44	Nonlinear Optical Signal Processing and Generation of Quantum States using Intermodal Four-wave Mixing. , 2018, , .		1
45	Record-High Secret Key Rate for Joint Classical and Quantum Transmission Over a 37-Core Fiber. , 2018, ,		13
46	Improved SBS Limited Parametric Conversion by Use of Few-Mode Fibers. , 2018, , .		0
47	Fiber mode excitation using phase-only spatial light modulation: Guideline on free-space path design and lossless optimization. AIP Advances, 2018, 8, .	1.3	3
48	Large-scale Integration of Multidimensional Quantum Photonics Circuits on Silicon. , 2018, , .		1
49	12 mode, WDM, MIMO-free orbital angular momentum transmission. Optics Express, 2018, 26, 20225.	3.4	77
50	The Bowtie Effect in Cylindrical Waveguides. Journal of Lightwave Technology, 2018, 36, 3309-3317.	4.6	3
51	Shape-preserving and unidirectional frequency conversion by four-wave mixing. Optics Express, 2018, 26, 17145.	3.4	12
52	Engineering spectrally unentangled photon pairs from nonlinear microring resonators by pump manipulation. Optics Letters, 2018, 43, 859.	3.3	31
53	Analytic description of four-wave mixing in silicon-on-insulator waveguides. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 702.	2.1	2
54	Photon-Pair Sources Based on Intermodal Four-Wave Mixing in Few-Mode Fibers. Fibers, 2018, 6, 32.	4.0	24

#	Article	IF	CITATIONS
55	Entanglement swapping for generation of heralded time-frequency-entangled photon pairs. Physical Review A, 2018, 98, .	2.5	10
56	Fiber-based high-dimensional quantum key distribution with twisted photons. , 2018, , .		2
57	Spectrally unentangled photon pairs from microring resonators using pump-pulse tailoring. , 2018, , .		2
58	A Novel Fabrication Method for Photonic Lanterns. , 2018, , .		1
59	Towards the Use of Machine Learning in Setups for OAM Mode Excitation in Optical Fibers. , 2018, , .		0
60	Unidirectional Frequency Conversion in Silicon-based Double-Ring Microresonator. , 2018, , .		0
61	Heralded single-photon source based on intermodal four-wave mixing in a few-mode fiber. , 2018, , .		0
62	Mode-Group Selective Air-Clad Photonic Lantern. , 2018, , .		0
63	High precision cross-correlated imaging in few-mode fibers. Proceedings of SPIE, 2017, , .	0.8	0
64	All-fiber photon-pair source at telecom wavelengths. , 2017, , .		0
65	Space division multiplexing chip-to-chip quantum key distribution. Scientific Reports, 2017, 7, 12459.	3.3	32
66	High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. Npj Quantum Information, 2017, 3, .	6.7	182
67	Effects of noninstantaneous nonlinear processes on photon-pair generation by spontaneous four-wave mixing. Physical Review A, 2017, 95, .	2.5	9
68	Two-Dimensional Quantum Key Distribution (QKD) Protocol for Increased Key Rate Fiber-Based Quantum Communications. , 2017, , .		2
69	Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating. , 2017, , .		0
70	Flexible cross-correlated (C^2) imaging method for the modal content characterization in a broad range of wavelengths. Optics Express, 2017, 25, 5521.	3.4	3
71	Effects of Raman scattering and attenuation in silica fiber-based parametric frequency conversion. Optics Express, 2017, 25, 7324.	3.4	5
72	Spectrally pure heralded single photons by spontaneous four-wave mixing in a fiber: reducing impact of dispersion fluctuations. Optics Express, 2017, 25, 20835.	3.4	15

#	Article	IF	CITATIONS
73	Generation of two-temporal-mode photon states by vector four-wave mixing. Optics Express, 2017, 25, 20877.	3.4	4
74	Broadband wavelength conversion in a silicon vertical-dual-slot waveguide. Optics Express, 2017, 25, 32964.	3.4	8
75	Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides. Optics Letters, 2017, 42, 3670.	3.3	11
76	Study of Raman-free photon pair generation using inter-modal four-wave mixing in a few-mode silica fiber. , 2017, , .		0
77	Split-step scheme for photon-pair generation through spontaneous four-wave mixing. , 2017, , .		Ο
78	Raman amplification of OAM modes. , 2017, , .		2
79	12 Mode, MIMO-Free OAM Transmission. , 2017, , .		8
80	High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide. Applied Physics Express, 2017, 10, 062801.	2.4	26
81	Determining the group velocity dispersion by field analysis for the LP_OX, LP_1X, and LP_2X mode groups independently of the fiber length: applications to step-index fibers. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 7.	2.1	1
82	Near-infrared photon-pair generation by intermodal four-wave mixing in a few-mode fiber. , 2017, , .		0
83	Fiber Amplifiers. Springer Series in Optical Sciences, 2017, , 585-627.	0.7	О
84	Low loss 19-cell hollow core photonic bandgap fiber as transmission medium for mode division multiplexed system. , 2017, , .		0
85	Azimuthal asymmetry in HE1,X modes analyzed. , 2017, , .		Ο
86	Determining the group velocity dispersion by field analysis for the LP_OX, LP_1X, and LP_2X mode groups independently of the fiber length: applications to step-index fibers. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2662.	2.1	0
87	Inter-modal four-wave mixing study in a two-mode fiber. Optics Express, 2016, 24, 30338.	3.4	66
88	Light interaction with nano-structured diatom frustule, from UV-A to NIR. MRS Advances, 2016, 1, 3811-3816.	0.9	4
89	Two-dimensional distributed-phase-reference protocol for quantum key distribution. Scientific Reports, 2016, 6, 36756.	3.3	30
90	Experimental characterization of Raman overlaps between mode-groups. Scientific Reports, 2016, 6, 34693.	3.3	12

#	Article	IF	CITATIONS
91	Higher order mode optical fiber Raman amplifiers. , 2016, , .		ο
92	Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing. Physical Review A, 2016, 94, .	2.5	15
93	Broadband higher order mode conversion using chirped microbend long period gratings. Optics Express, 2016, 24, 23969.	3.4	15
94	The fascinating diatom frustule—can it play a role for attenuation of UV radiation?. Journal of Applied Phycology, 2016, 28, 3295-3306.	2.8	42
95	Detailed phase matching characterization of inter-modal four-wave mixing in a two-mode fiber. , 2016, ,		2
96	Generation of pure heralded single-photon states by cross-polarized spontaneous four-wave mixing. , 2016, , .		0
97	Silicon photonics for multicore fiber communication. , 2016, , .		1
98	Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber. Optics Express, 2015, 23, 26139.	3.4	14
99	Challenges in higher order mode Raman amplifiers. , 2015, , .		2
100	Mode resolved bend-loss analysis in few-mode fibers using spatially and spectrally resolved imaging. Optics Letters, 2015, 40, 4583.	3.3	16
101	Comparing optical properties of different species of diatoms. , 2015, , .		5
102	Interference patterns and extinction ratio of the diatom Coscinodiscus granii. Optics Express, 2015, 23, 9543.	3.4	15
103	Temporal mode sorting using dual-stage quantum frequency conversion by asymmetric Bragg scattering. Optics Express, 2015, 23, 23287.	3.4	12
104	Interferometric characterization of few-mode fibers (FMF) for mode-division multiplexing (MDM). Proceedings of SPIE, 2015, , .	0.8	0
105	Fiber-Optical Parametric Amplification of Sub-Picosecond Pulses for High-Speed Optical Communications. Fiber and Integrated Optics, 2015, 34, 23-37.	2.5	4
106	Break up of the azimuthal symmetry of higher order fiber modes. Optics Express, 2014, 22, 11861.	3.4	9
107	Analytic model utilizing the complex ABCD method for range dependency of a monostatic coherent lidar. Applied Optics, 2014, 53, 5977.	1.8	0
108	Quantitative evaluation of standard deviations of group velocity dispersion in optical fibre using parametric amplification. Electronics Letters, 2014, 50, 199-200.	1.0	2

#	Article	IF	CITATIONS
109	Divergence Angle as a Quality Parameter for Fiber Modes. , 2014, , .		1
110	Selfhealing of asymmetric Bessel-like modes. , 2014, , .		0
111	Effects of Raman scattering in quantum state-preserving frequency conversion. , 2014, , .		0
112	Geometric interpretation of four-wave mixing. Physical Review A, 2013, 88, .	2.5	8
113	Numerical modelling of spontaneous emission in optical parametric amplifiers. , 2013, , .		0
114	Transverse Field Dispersion in the Generalized Nonlinear Schrödinger Equation: Four Wave Mixing in a Higher Order Mode Fiber. Journal of Lightwave Technology, 2013, 31, 3425-3431.	4.6	9
115	Quantum and Raman Noise in a Depleted Fiber Optical Parametric Amplifier. , 2013, , .		0
116	Frequency noise in frequency swept fiber laser. Optics Letters, 2013, 38, 1089.	3.3	1
117	Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers. Optics Express, 2013, 21, 29320.	3.4	14
118	Parametric amplification and phase preserving amplitude regeneration of a 640 Gbit/s RZ-DPSK signal. Optics Express, 2013, 21, 25944.	3.4	14
119	Dynamic characterization and amplification of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers. Optics Express, 2013, 21, 26044.	3.4	13
120	Experimental demonstration of intermodal nonlinear effects between full vectorial modes in a few moded fiber. Optics Express, 2013, 21, 28836.	3.4	10
121	Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 884.	2.1	4
122	Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides. Optics Express, 2013, 21, 13840.	3.4	52
123	Monolithic PM Raman fiber laser at 1679 nm for Raman amplification at 1810 nm. , 2013, , .		0
124	Design of an 1800nm Raman amplifier. , 2013, , .		2
125	Mode selectivity with quantum-state-preserving frequency conversion using four-wave mixing. , 2013, , \cdot		0
126	Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers. Optics Express, 2013, 21, 10764.	3.4	26

#	Article	IF	CITATIONS
127	Highly Stable PM Raman Fiber Laser at 1680 nm. , 2013, , .		2
128	Effects of nonlinear phase modulation on quantum frequency conversion using four-wave mixing Bragg scattering. , 2013, , .		0
129	Quantum Frequency Conversion of Single-Photon States by Three and Four-Wave Mixing. , 2013, , .		0
130	Intermodal Raman Scattering between Full Vectorial Modes in Few Moded Fiber. , 2013, , .		1
131	Parametric Amplification of a 640 Gbit/s RZ-DPSK Signal. , 2013, , .		1
132	Experimental Demonstration of Phase Sensitive Parametric Processes in a Nano-Engineered Silicon Waveguide. , 2013, , .		1
133	Quantum frequency translation by four-wave mixing in a fiber: low-conversion regime. Optics Express, 2012, 20, 8367.	3.4	17
134	Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers. Optics Express, 2012, 20, 15530.	3.4	13
135	Focus Issue Introduction: Nonlinear Photonics. Optics Express, 2012, 20, 27212.	3.4	3
136	Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime. Optics Express, 2012, 20, 27454.	3.4	11
137	Raman probes based on optically-poled double-clad fiber and coupler. Optics Express, 2012, 20, 28563.	3.4	6
138	Polarization-maintaining higher-order mode fiber module with anomalous dispersion at 1Âμm. Optics Letters, 2012, 37, 4170.	3.3	9
139	Pump-To-Signal Intensity Modulation Transfer Characteristics in FOPAs: Modulation Frequency and Saturation Effect. Journal of Lightwave Technology, 2012, 30, 3061-3067.	4.6	7
140	Gain optimization in fiber optical parametric amplifiers by combining standard and high-SBS threshold highly nonlinear fibers. , 2012, , .		2
141	Synthesis of flat-top gain response in fiber phase sensitive amplifiers with improved phase noise regeneration tolerance. , 2012, , .		Ο
142	Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification. , 2012, , .		0
143	Fibre Amplifiers. Springer Series in Optical Sciences, 2012, , 473-509.	0.7	1
144	Experimental investigation of pump-to-signal noise transfer in one-pump phase insensitive fibre optic parametric amplifiers. , 2011, , .		0

#	Article	IF	CITATIONS
145	Extinction ratio and gain optimization of dual-pump degenerate-idler phase sensitive amplifiers. , 2011, , .		0
146	Saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fibre optic parametric amplifiers. , 2011, , .		1
147	Impact of the Scalar Approximation on the Prediction of the Group Velocity Dispersion. Journal of Lightwave Technology, 2011, 29, 3129-3134.	4.6	8
148	Accurate simulation of Raman amplified lightwave synthesized frequency sweeper. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1493.	2.1	1
149	Full and semi-analytic analyses of two-pump parametric amplification with pump depletion. Optics Express, 2011, 19, 6648.	3.4	15
150	Formation and characterization of varied size germanium nanocrystals by electron microscopy, Raman spectroscopy, and photoluminescence. Optical Materials Express, 2011, 1, 643.	3.0	14
151	Frequency stepped pulse train modulated wind sensing lidar. , 2011, , .		4
152	Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnology Advances, 2011, 29, 575-599.	11.7	108
153	The raman contribution to the intensity dependent refractive index in optical fibers. , 2011, , .		0
154	Wavelength Conversion by Cascaded FWM in a Fiber Optical Parametric Oscillator. , 2011, , .		0
155	Raman Scattering in a Dimethyl Sulfoxide-Filled Hollow-Core Photonic Crystal Fiber. , 2010, , .		0
156	Suppression of Brillouin scattering in fibre-optical parametric amplifier by applying temperature control and phase modulation. Electronics Letters, 2009, 45, 125.	1.0	10
157	Measurement and Modeling of Low-Wavelength Losses in Silica Fibers and Their Impact at Communication Wavelengths. Journal of Lightwave Technology, 2009, 27, 1296-1300.	4.6	4
158	Amplitude Regeneration of RZ-DPSK Signals in Single-Pump Fiber-Optic Parametric Amplifiers. IEEE Photonics Technology Letters, 2009, 21, 872-874.	2.5	53
159	Spontaneous emission from saturated parametric amplifiers. , 2009, , .		0
160	Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation. , 2008, , .		3
161	730-nm optical parametric conversion from near- to short-wave infrared band. Optics Express, 2008, 16, 5435.	3.4	43
162	Fabrication of Ge nanocrystals doped silica-on-silicon waveguides and observation of their strong quantum confinement effect. , 2008, , .		0

#	Article	IF	CITATIONS
163	Gain characteristics of a saturated fiber optic parametric amplifier. , 2008, , .		Ο
164	Dynamic range enhancement and amplitude regeneration in single pump fibre optic parametric amplifiers using DPSK modulation. , 2008, , .		3
165	Low Wavelength Loss of Germanium Doped Silica Fibers. , 2008, , .		1
166	Fiber optical trap deposition of carbon nanotubes on fiber end-faces in a modelocked laser. , 2008, , .		5
167	Ge nanostructures doped silica-on-silicon waveguides. Proceedings of SPIE, 2007, , .	0.8	0
168	Brillouin Scattering in Fiber Optical Parametric Amplifiers. , 2007, , .		1
169	A generic lightwave integrated chip (GLIC) for fast high-resolution wavelength monitoring. , 2006, , .		2
170	Supercontinuum Generation in Fibers Infiltrated with Liquid Crystals. , 2006, , .		0
171	Analyzing the fundamental properties of Raman amplification in optical fibers. Journal of Lightwave Technology, 2005, 23, 3597-3605.	4.6	43
172	Distributed Raman Amplifiers. , 2005, , 103-168.		4
173	Optimization of Pumping Schemes for 160-Gb/s Single-Channel Raman Amplified Systems. IEEE Photonics Technology Letters, 2004, 16, 329-331.	2.5	12
174	Scaling of the raman gain coefficient: applications to germanosilicate fibers. Journal of Lightwave Technology, 2003, 21, 1652-1662.	4.6	68
175	Advances in silica-based integrated optics. Optical Engineering, 2003, 42, 2821.	1.0	60
176	Advances with silica-on-silicon planar waveguides. , 2003, 4987, 126.		0
177	A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles. IEEE Photonics Technology Letters, 2002, 14, 24-26.	2.5	93
178	3.28-Tb/s transmission over 3 x 100 km of nonzero-dispersion fiber using dual C- and L-band distributed Raman amplification. IEEE Photonics Technology Letters, 2000, 12, 1079-1081.	2.5	38
179	Pump interactions in a 100-nm bandwidth Raman amplifier. IEEE Photonics Technology Letters, 1999, 11, 530-532.	2.5	353
180	Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers. Electronics Letters, 1999, 35, 997.	1.0	84

#	Article	IF	CITATIONS
181	240-km repeater spacing in a 5280-km WDM system experiment using 8 x 2.5 Gb/s NRZ transmission. IEEE Photonics Technology Letters, 1998, 10, 893-895.	2.5	22
182	Polarization sensitivity of the nonlinear amplifying loop mirror. Optics Letters, 1996, 21, 1535.	3.3	15
183	Soliton transmission over more than 90 km using distributed erbium-doped fibres. Electronics Letters, 1995, 31, 219-220.	1.0	11
184	High-power figure-of-eight laser for soliton transmission experiments. Electronics Letters, 1995, 31, 645.	1.0	10
185	91-km attenuation-free transmission with low noise accumulation by use of distributed erbium-doped fiber. Optics Letters, 1995, 20, 1250.	3.3	6
186	Interaction of uniform phase picosecond pulses with chirped and unchirped photosensitive fibre Bragg gratings. Electronics Letters, 1994, 30, 995-996.	1.0	24
187	Raman effect in transparent distributed erbium-doped fibre. Optics Communications, 1994, 106, 183-186.	2.1	2
188	Dual-wavelength operation of a passively mode-locked "figure-of-eight―ytterbium-erbium fibre soliton laser. Optics Communications, 1994, 108, 297-301.	2.1	37
189	Optimal design of single-cladded dispersion-compensating optical fibers. Optics Letters, 1994, 19, 457.	3.3	17
190	Stability in distributed and lumped gain transmission systems. Optics Letters, 1993, 18, 867.	3.3	10
191	Effects of initial overlap in a wavelength-division-multiplexed soliton transmission system. Optics Letters, 1993, 18, 1908.	3.3	23
192	Detailed comparison of two approximate methods for the solution of the scalar wave equation for a rectangular optical waveguide. Journal of Lightwave Technology, 1993, 11, 429-433.	4.6	22
193	Long distance transmission through distributed erbium-doped fibers. Journal of Lightwave Technology, 1993, 11, 2105-2115.	4.6	22
194	Quantum limited noise figure operation of high gain erbium doped fiber amplifiers. Journal of Lightwave Technology, 1993, 11, 1344-1352.	4.6	14
195	Noise in distributed erbium-doped fibers. IEEE Photonics Technology Letters, 1993, 5, 218-221.	2.5	12
196	Experimental investigation of tapered erbium-doped fiber amplifiers. , 1993, , .		0
197	<title>Silica waveguide integrated optical isolator</title> . , 1993, , .		0
198	Long-haul transmission in aluminum- and germanium-codoped distributed erbium-doped fibers. , 1993, , .		0

#	Article	IF	CITATIONS
199	Design of long distance distributed erbium doped fibre amplifier. Electronics Letters, 1992, 28, 287.	1.0	13
200	Gain Variations for an Erbium Doped Fiber Amplifier in a Temperature-Range from 45 K to 320 K. Journal of Optical Communications, 1992, 13, .	4.7	3
201	<title>Optimizing gain and noise performance of EDFAs with insertion of a filter or an isolator</title> . , 1992, , .		9
202	<title>Performance improvement of direct detection systems using local and/or long-distance-pumped fiber amplifiers</title> . , 1992, 1581, 209.		0
203	<title>Demand for accuracy of the attenuation constant in distributed active fibers</title> . , 1992, , .		2
204	Optimum design of Nd-doped fiber optical amplifiers. IEEE Photonics Technology Letters, 1992, 4, 49-51.	2.5	6
205	Optimum position of isolators within erbium-doped fibers. IEEE Photonics Technology Letters, 1992, 4, 568-570.	2.5	18
206	Optimum signal wavelength for a distributed erbium-doped fiber amplifier. IEEE Photonics Technology Letters, 1992, 4, 714-717.	2.5	8
207	Fundamental design of a distributed erbium-doped fiber amplifier for long-distance transmission. Journal of Lightwave Technology, 1992, 10, 1544-1552.	4.6	12
208	Maximum gain in optical amplifier-based systems as determined from reflections and backscattering effects. Applied Optics, 1992, 31, 3386.	2.1	0
209	Optimum placement of filters in 1300 nm Nd-fibre amplifiers. Optics Communications, 1992, 89, 30-32.	2.1	2
210	Simple fiber-optic low-temperature sensor that uses microbending loss. Optics Letters, 1991, 16, 1355.	3.3	18
211	Optimum use of cascade coupled in-line amplifiers for soliton communication systems. Optics Communications, 1991, 84, 339-342.	2.1	1
212	Fast method for accurate prediction of fibre laser oscillation wavelength. Electronics Letters, 1991, 27, 1644.	1.0	25
213	The influence of nonfundamental pump modes in erbium-doped fiber amplifiers. Fiber and Integrated Optics, 1991, 10, 11-21.	2.5	Ο
214	Numerical modeling of an integrated erbium-doped glass laser. Fiber and Integrated Optics, 1991, 10, 239-243.	2.5	3
215	Performance improvement of direct detection systems using local and/or long-distance pumped fiber amplifiers. Fiber and Integrated Optics, 1991, 10, 215-223.	2.5	0
216	9 dB gain improvement of 1300 nm optical amplifier by amplified spontaneous emission suppressing fibre design. Electronics Letters, 1991, 27, 1701.	1.0	7

#	Article	IF	CITATIONS
217	Optimum design of erbium fibre amplifiers pumped with sources emitting at 1480 nm. Electronics Letters, 1990, 26, 1419.	1.0	7
218	Air-clad photonic lanterns: fabrication and applications. Journal of Optics (United Kingdom), 0, , .	2.2	0