## **Chun-Xiang Fu**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8319699/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | PAMP-INDUCED SECRETED PEPTIDE 3 modulates salt tolerance through RECEPTOR-LIKE KINASE 7 in plants. Plant Cell, 2022, 34, 927-944.                                                                           | 6.6 | 21        |
| 2  | Downregulation of miR156-Targeted PvSPL6 in Switchgrass Delays Flowering and Increases Biomass<br>Yield. Frontiers in Plant Science, 2022, 13, 834431.                                                      | 3.6 | 4         |
| 3  | Down-regulation of <i>PvSAMS</i> impairs <i>S</i> -adenosyl-L-methionine and lignin biosynthesis, and improves cell wall digestibility in switchgrass. Journal of Experimental Botany, 2022, 73, 4157-4169. | 4.8 | 6         |
| 4  | <i>LATERAL BRANCHING OXIDOREDUCTASE</i> , one novel target gene of Squamosa Promoter Binding Proteinâ€ike 2, regulates tillering in switchgrass. New Phytologist, 2022, 235, 563-575.                       | 7.3 | 7         |
| 5  | Conduction of a chemical structure-guided metabolic phenotype analysis method targeting<br>phenylpropane pathway via LC-MS: Ginkgo biloba and soybean as examples. Food Chemistry, 2022, 390,<br>133155.    | 8.2 | 6         |
| 6  | Genetic manipulation of bermudagrass photosynthetic biosynthesis using<br><scp><i>Agrobacteriumâ€mediated</i></scp> transformation. Physiologia Plantarum, 2022, 174, e13710.                               | 5.2 | 4         |
| 7  | Genome-Wide Identification of Switchgrass Laccases Involved in Lignin Biosynthesis and Heavy-Metal<br>Responses. International Journal of Molecular Sciences, 2022, 23, 6530.                               | 4.1 | 7         |
| 8  | <i>Escherichia coli</i> segments its controls on carbonâ€dependent gene expression into global and specific regulations. Microbial Biotechnology, 2021, 14, 1084-1106.                                      | 4.2 | 4         |
| 9  | Ginkgo biloba. Trends in Genetics, 2021, 37, 488-489.                                                                                                                                                       | 6.7 | 10        |
| 10 | Highly efficient detoxification of dinitrotoluene by transgenic switchgrass overexpressing bacterial <i>nitroreductase</i> . Plant, Cell and Environment, 2021, 44, 3173-3183.                              | 5.7 | 4         |
| 11 | Establishment of an efficient Agrobacterium-mediated genetic transformation system in halophyte<br>Puccinellia tenuiflora. Molecular Breeding, 2021, 41, 1.                                                 | 2.1 | 6         |
| 12 | Exogenous proanthocyanidins improve tolerance of Cu-toxicity by amelioration of oxidative damage and re-programming of gene expression in Medicago sativa. PLoS ONE, 2021, 16, e0259100.                    | 2.5 | 3         |
| 13 | Gain of Spontaneous clpX Mutations Boosting Motility via Adaption to Environments in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2021, 9, 772397.                                      | 4.1 | 3         |
| 14 | Overexpression of PvWOX3a in switchgrass promotes stem development and increases plant height.<br>Horticulture Research, 2021, 8, 252.                                                                      | 6.3 | 11        |
| 15 | MYB20, MYB42, MYB43, and MYB85 Regulate Phenylalanine and Lignin Biosynthesis during Secondary<br>Cell Wall Formation. Plant Physiology, 2020, 182, 1272-1283.                                              | 4.8 | 154       |
| 16 | Efficient Genome Editing in Populus Using CRISPR/Cas12a. Frontiers in Plant Science, 2020, 11, 593938.                                                                                                      | 3.6 | 36        |
| 17 | Characterization of Two New brown midrib1 Mutations From an EMS-Mutagenic Maize Population for Lignocellulosic Biomass Utilization. Frontiers in Plant Science, 2020, 11, 594798.                           | 3.6 | 5         |
| 18 | MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar.<br>Horticulture Research, 2020, 7, 118.                                                                        | 6.3 | 90        |

CHUN-XIANG FU

| #  | Article                                                                                                                                                                                                                                         | lF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The nodulation and nyctinastic leaf movement is orchestrated by clock gene LHY in <i>Medicago<br/>truncatula</i> . Journal of Integrative Plant Biology, 2020, 62, 1880-1895.                                                                   | 8.5  | 26        |
| 20 | Pyropia yezoensis genome reveals diverse mechanisms of carbon acquisition in the intertidal environment. Nature Communications, 2020, 11, 4028.                                                                                                 | 12.8 | 49        |
| 21 | The miR396-GRFs Module Mediates the Prevention of Photo-oxidative Damage by Brassinosteroids during Seedling De-Etiolation in Arabidopsis. Plant Cell, 2020, 32, 2525-2542.                                                                     | 6.6  | 28        |
| 22 | Efficient Generation of CRISPR/Cas9-Mediated Homozygous/Biallelic Medicago truncatula Mutants<br>Using a Hairy Root System. Frontiers in Plant Science, 2020, 11, 294.                                                                          | 3.6  | 25        |
| 23 | The developmental dynamics of the <i>Populus</i> stem transcriptome. Plant Biotechnology Journal, 2019, 17, 206-219.                                                                                                                            | 8.3  | 112       |
| 24 | Genome-wide characterization of SPL family in Medicago truncatula reveals the novel roles of miR156/SPL module in spiky pod development. BMC Genomics, 2019, 20, 552.                                                                           | 2.8  | 21        |
| 25 | Genome-wide transcriptional adaptation to salt stress in Populus. BMC Plant Biology, 2019, 19, 367.                                                                                                                                             | 3.6  | 32        |
| 26 | Genome-Wide Analysis of the <i>TCP</i> Gene Family in Switchgrass ( <i>Panicum virgatum</i> L.).<br>International Journal of Genomics, 2019, 2019, 1-13.                                                                                        | 1.6  | 21        |
| 27 | Mutation of 4-coumarate: coenzyme A ligase 1 gene affects lignin biosynthesis and increases the cell wall digestibility in maize brown midrib5 mutants. Biotechnology for Biofuels, 2019, 12, 82.                                               | 6.2  | 40        |
| 28 | Efficient genetic transformation and <scp>CRISPR</scp> /Cas9â€mediated genome editing in <i>Lemna<br/>aequinoctialis</i> . Plant Biotechnology Journal, 2019, 17, 2143-2152.                                                                    | 8.3  | 28        |
| 29 | Deciphering global gene expression and regulation strategy in <i>Escherichia coli</i> during carbon<br>limitation. Microbial Biotechnology, 2019, 12, 360-376.                                                                                  | 4.2  | 11        |
| 30 | Metabolomics Integrated with Transcriptomics Reveals Redirection of the Phenylpropanoids<br>Metabolic Flux in <i>Ginkgo biloba</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 3284-3291.                                           | 5.2  | 85        |
| 31 | Simultaneous regulation of <i>F5H</i> in <scp>COMT</scp> â€ <scp>RNA</scp> i transgenic switchgrass<br>alters effects of <i><scp>COMT</scp></i> suppression on syringyl lignin biosynthesis. Plant<br>Biotechnology Journal, 2019, 17, 836-845. | 8.3  | 54        |
| 32 | PHB3 Maintains Root Stem Cell Niche Identity through ROS-Responsive AP2/ERF Transcription Factors in Arabidopsis. Cell Reports, 2018, 22, 1350-1363.                                                                                            | 6.4  | 128       |
| 33 | Alteration of <i>S</i> â€adenosylhomocysteine levels affects lignin biosynthesis in switchgrass. Plant<br>Biotechnology Journal, 2018, 16, 2016-2026.                                                                                           | 8.3  | 17        |
| 34 | MicroRNA528 Affects Lodging Resistance of Maize by Regulating Lignin Biosynthesis under<br>Nitrogen-Luxury Conditions. Molecular Plant, 2018, 11, 806-814.                                                                                      | 8.3  | 136       |
| 35 | Structural Characterization of Lignocresols from Transgenic and Wild-Type Switchgrass. Polymers, 2018, 10, 727.                                                                                                                                 | 4.5  | 2         |
| 36 | Methylenetetrahydrofolate reductase modulates methyl metabolism and lignin monomer methylation in maize. Journal of Experimental Botany, 2018, 69, 3963-3973.                                                                                   | 4.8  | 11        |

CHUN-XIANG FU

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Genome-Wide Identification, Phylogeny, and Expression Analysis of ARF Genes Involved in Vegetative<br>Organs Development in Switchgrass. International Journal of Genomics, 2018, 2018, 1-13.                             | 1.6 | 4         |
| 38 | The <i>miR156</i> â€ <i>SPL4</i> module predominantly regulates aerial axillary bud formation and controls shoot architecture. New Phytologist, 2017, 216, 829-840.                                                       | 7.3 | 59        |
| 39 | Genome-wide characterization of GRAS family genes in Medicago truncatula reveals their evolutionary dynamics and functional diversification. PLoS ONE, 2017, 12, e0185439.                                                | 2.5 | 39        |
| 40 | Overexpression of the WOX gene STENOFOLIA improves biomass yield and sugar release in transgenic grasses and display altered cytokinin homeostasis. PLoS Genetics, 2017, 13, e1006649.                                    | 3.5 | 63        |
| 41 | <scp>UDP</scp> â€glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is<br>essential for the normal cell wall lignification in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88,<br>26-42. | 5.7 | 108       |
| 42 | Switchgrass SBP-box transcription factors PvSPL1 and 2 function redundantly to initiate side tillers and affect biomass yield of energy crop. Biotechnology for Biofuels, 2016, 9, 101.                                   | 6.2 | 46        |
| 43 | Metabolic engineering of 2-phenylethanol pathway producing fragrance chemical and reducing lignin<br>in Arabidopsis. Plant Cell Reports, 2015, 34, 1331-1342.                                                             | 5.6 | 7         |
| 44 | Twoâ€year field analysis of reduced recalcitrance transgenic switchgrass. Plant Biotechnology<br>Journal, 2014, 12, 914-924.                                                                                              | 8.3 | 104       |
| 45 | Cell wall polysaccharide distribution in Miscanthus lutarioriparius stem using immuno-detection.<br>Plant Cell Reports, 2014, 33, 643-653.                                                                                | 5.6 | 15        |
| 46 | Standardization of Switchgrass Sample Collection for Cell Wall and Biomass Trait Analysis.<br>Bioenergy Research, 2013, 6, 755-762.                                                                                       | 3.9 | 87        |
| 47 | MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering. Plant Science, 2013, 212, 1-9.                                                              | 3.6 | 60        |
| 48 | Overexpression of miR156 in switchgrass ( <i>Panicum virgatum</i> L.) results in various<br>morphological alterations and leads to improved biomass production. Plant Biotechnology Journal,<br>2012, 10, 443-452.        | 8.3 | 293       |
| 49 | Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3803-3808.             | 7.1 | 585       |
| 50 | Downregulation of Cinnamyl Alcohol Dehydrogenase (CAD) Leads to Improved Saccharification Efficiency in Switchgrass. Bioenergy Research, 2011, 4, 153-164.                                                                | 3.9 | 156       |
| 51 | Agrobacterium-Mediated Transformation of Switchgrass and Inheritance of the Transgenes. Bioenergy Research, 2009, 2, 275-283.                                                                                             | 3.9 | 80        |