## Samer Mohammed

## List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/831921/samer-mohammed-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

| 50                | 1,543                | 18                 | 39              |
|-------------------|----------------------|--------------------|-----------------|
| papers            | citations            | h-index            | g-index         |
| 54<br>ext. papers | 1,940 ext. citations | <b>3.2</b> avg, IF | 4.97<br>L-index |

| #  | Paper                                                                                                                                                                                      | IF   | Citations |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 50 | Ankle Dorsiflexion Assistance Using Adaptive Functional Electrical Stimulation and Actuated Ankle Foot Orthosis. <i>Biosystems and Biorobotics</i> , <b>2022</b> , 319-323                 | 0.2  |           |
| 49 | Attention-Based Gated Recurrent Unit for Gesture Recognition. <i>IEEE Transactions on Automation Science and Engineering</i> , <b>2021</b> , 18, 495-507                                   | 4.9  | 6         |
| 48 | . IEEE Transactions on Medical Robotics and Bionics, <b>2021</b> , 1-1                                                                                                                     | 3.1  | 1         |
| 47 | . IEEE Transactions on Robotics, <b>2021</b> , 1-20                                                                                                                                        | 6.5  | 1         |
| 46 | Proxy-Based Control of Intelligent Assistive Walker for Intentional Sit-to-Stand Transfer. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2021</b> , 1-1                               | 5.5  | 1         |
| 45 | Sparse Visual-Inertial Measurement Units Placement for Gait Kinematics Assessment. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , <b>2021</b> , 29, 1300-1311 | 4.8  |           |
| 44 | Human Gait Phase Recognition using a Hidden Markov Model Framework* 2020,                                                                                                                  |      | 1         |
| 43 | Design of a Capacitance Sensor for Human Intention Detection of Daily Living Activities. <i>IFAC-PapersOnLine</i> , <b>2020</b> , 53, 8525-8530                                            | 0.7  | 1         |
| 42 | RISE-based adaptive control for EICoSI exoskeleton to assist knee joint mobility. <i>Robotics and Autonomous Systems</i> , <b>2020</b> , 124, 103354                                       | 3.5  | 11        |
| 41 | Force Control of SEA-Based Exoskeletons for Multimode Human <b>R</b> obot Interactions. <i>IEEE Transactions on Robotics</i> , <b>2020</b> , 36, 570-577                                   | 6.5  | 14        |
| 40 | Upper Limbs Kinematics Estimation Using Affordable Visual-Inertial Sensors. <i>IEEE Transactions on Automation Science and Engineering</i> , <b>2020</b> , 1-11                            | 4.9  | 3         |
| 39 | Hybrid FES-Exoskeleton Controller to Assist Sit-To-Stand movement. IFAC-PapersOnLine, 2019, 51, 296-                                                                                       | 30.7 | 10        |
| 38 | Hybrid impedance control of a knee joint orthosis. <i>Industrial Robot</i> , <b>2019</b> , 46, 192-201                                                                                     | 1.4  | 2         |
| 37 | Optimizing Control of Passive Gait Training Exoskeleton Driven by Pneumatic Muscles Using Switch-Mode Firefly Algorithm. <i>Robotica</i> , <b>2019</b> , 37, 2087-2103                     | 2.1  | 8         |
| 36 | Adaptive Proxy-Based Controller of an Active Ankle Foot Orthosis to Assist Lower Limb Movements of Paretic Patients. <i>Robotica</i> , <b>2019</b> , 37, 2147-2164                         | 2.1  | 12        |
| 35 | Special Issue on Wearable Robotics: Dynamics, Control and Applications. <i>Robotica</i> , <b>2019</b> , 37, 2011-2013                                                                      | 2.1  | 1         |
| 34 | Impedance Reduction Control of a Knee Joint Human-Exoskeleton System. <i>IEEE Transactions on Control Systems Technology</i> , <b>2019</b> , 27, 2541-2556                                 | 4.8  | 15        |

## (2015-2019)

| 33 | Data-Driven Based Approach to Aid Parkinson MDisease Diagnosis. Sensors, 2019, 19,                                                                                                                               | 3.8 | 42  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 32 | Automatic Segmentation of Stabilometric Signals Using Hidden Markov Model Regression. <i>IEEE Transactions on Automation Science and Engineering</i> , <b>2018</b> , 15, 545-555                                 | 4.9 | 2   |
| 31 | Fast Gait Mode Detection and Assistive Torque Control of an Exoskeletal Robotic Orthosis for Walking Assistance. <i>IEEE Transactions on Robotics</i> , <b>2018</b> , 1-18                                       | 6.5 | 28  |
| 30 | Cooperative Control for Knee Joint Flexion-Extension Movement Restoration 2018,                                                                                                                                  |     | 4   |
| 29 | Adaptive FES Assistance Using a Novel Gait Phase Detection Approach 2018,                                                                                                                                        |     | 2   |
| 28 | Automatic Recognition of Gait Phases Using a Multiple-Regression Hidden Markov Model. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2018</b> , 1-1                                                          | 5.5 | 19  |
| 27 | . IEEE Transactions on Control Systems Technology, <b>2017</b> , 25, 712-719                                                                                                                                     | 4.8 | 34  |
| 26 | Active impedance control of a knee-joint orthosis during swing phase. <i>IEEE International Conference on Rehabilitation Robotics</i> , <b>2017</b> , 2017, 435-440                                              | 1.3 | 9   |
| 25 | Adaptive Control of an Actuated Ankle Foot Orthosis for Foot-Drop Correction. <i>IFAC-PapersOnLine</i> , <b>2017</b> , 50, 1384-1389                                                                             | 0.7 | 6   |
| 24 | Adaptive control of an actuated-ankle-foot-orthosis. <i>IEEE International Conference on Rehabilitation Robotics</i> , <b>2017</b> , 2017, 1584-1589                                                             | 1.3 | 7   |
| 23 | Recognition of gait cycle phases using wearable sensors. <i>Robotics and Autonomous Systems</i> , <b>2016</b> , 75, 50-59                                                                                        | 3.5 | 28  |
| 22 | Nonlinear disturbance observer based sliding mode control of a human-driven knee joint orthosis. <i>Robotics and Autonomous Systems</i> , <b>2016</b> , 75, 41-49                                                | 3.5 | 59  |
| 21 | Recognition of different daily living activities using hidden Markov model regression 2016,                                                                                                                      |     | 5   |
| 20 | . IEEE Systems Journal, <b>2016</b> , 10, 1068-1081                                                                                                                                                              | 4.3 | 186 |
| 19 | 2016,                                                                                                                                                                                                            |     | 7   |
| 18 | 2015,                                                                                                                                                                                                            |     | 10  |
| 17 | Control of Upper-Limb Power-Assist Exoskeleton Using a Human-Robot Interface Based on Motion Intention Recognition. <i>IEEE Transactions on Automation Science and Engineering</i> , <b>2015</b> , 12, 1257-1270 | 4.9 | 104 |
| 16 | A generalized control framework of assistive controllers and its application to lower limb exoskeletons. <i>Robotics and Autonomous Systems</i> , <b>2015</b> , 73, 68-77                                        | 3.5 | 40  |

| 15     | Physical Human Activity Recognition Using Wearable Sensors. Sensors, 2015, 15, 31314-38                                                                                                                                                                                                      | 3.8 | 417                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|
| 14     | Posture estimation and human support using wearable sensors and walking-aid robot. <i>Robotics and Autonomous Systems</i> , <b>2015</b> , 73, 24-43                                                                                                                                          | 3.5 | 29                 |
| 13     | Robust Control of an Actuated Orthosis for Lower Limb Movement Restoration. <i>Springer Tracts in Advanced Robotics</i> , <b>2015</b> , 385-400                                                                                                                                              | 0.5 | 2                  |
| 12     | Powered orthosis for lower limb movements assistance and rehabilitation. <i>Control Engineering Practice</i> , <b>2014</b> , 26, 245-253                                                                                                                                                     | 3.9 | 35                 |
| 11     | Nested saturation based control of an actuated knee joint orthosis. <i>Mechatronics</i> , <b>2013</b> , 23, 1141-1149                                                                                                                                                                        | 3   | 31                 |
| 10     | Ubiquitous robotics: Recent challenges and future trends. <i>Robotics and Autonomous Systems</i> , <b>2013</b> , 61, 1162-1172                                                                                                                                                               | 3.5 | 62                 |
| 9      | Toward Movement Restoration of Knee Joint Using Robust Control of Powered Orthosis. <i>IEEE Transactions on Control Systems Technology</i> , <b>2013</b> , 21, 2156-2168                                                                                                                     | 4.8 | 20                 |
| 8      | An Unsupervised Approach for Automatic Activity Recognition Based on Hidden Markov Model                                                                                                                                                                                                     | 4.9 | 113                |
|        | Regression. <i>IEEE Transactions on Automation Science and Engineering</i> , <b>2013</b> , 10, 829-835                                                                                                                                                                                       | T'J | <i></i>            |
| 7      | 2013,                                                                                                                                                                                                                                                                                        | T-2 | 13                 |
| 7      |                                                                                                                                                                                                                                                                                              | TV  |                    |
|        | 2013,                                                                                                                                                                                                                                                                                        | 1.7 | 13                 |
| 6      | <ul><li>2013,</li><li>Activity recognition using body mounted sensors: An unsupervised learning based approach 2012,</li><li>Lower-Limb Movement Assistance through Wearable Robots: State of the Art and Challenges.</li></ul>                                                              |     | 13                 |
| 6      | 2013,  Activity recognition using body mounted sensors: An unsupervised learning based approach 2012,  Lower-Limb Movement Assistance through Wearable Robots: State of the Art and Challenges.  Advanced Robotics, 2012, 26, 1-22                                                           |     | 13<br>8<br>85      |
| 6<br>5 | 2013,  Activity recognition using body mounted sensors: An unsupervised learning based approach 2012,  Lower-Limb Movement Assistance through Wearable Robots: State of the Art and Challenges.  Advanced Robotics, 2012, 26, 1-22  Bounded control of an actuated lower limb orthosis 2011, |     | 13<br>8<br>85<br>7 |