John L Harwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8319101/publications.pdf

Version: 2024-02-01

288 papers

11,542 citations

53 h-index 94 g-index

298 all docs 298 docs citations

times ranked

298

10672 citing authors

#	Article	IF	CITATIONS
1	Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 2006, 45, 160-186.	11.6	843
2	Recent advances in the biosynthesis of plant fatty acids. Lipids and Lipid Metabolism, 1996, 1301, 7-56.	2.6	431
3	Does the membrane's physical state control the expression of heat shock and other genes?. Trends in Biochemical Sciences, 1998, 23, 369-374.	7.5	338
4	A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis?. Progress in Lipid Research, 2012, 51, 95-148.	11.6	310
5	The versatility of algae and their lipid metabolism. Biochimie, 2009, 91, 679-684.	2.6	268
6	The lipid biochemistry of eukaryotic algae. Progress in Lipid Research, 2019, 74, 31-68.	11.6	258
7	Increasing the flow of carbon into seed oil. Biotechnology Advances, 2009, 27, 866-878.	11.7	256
8	n-3 Fatty Acids Specifically Modulate Catabolic Factors Involved in Articular Cartilage Degradation. Journal of Biological Chemistry, 2000, 275, 721-724.	3.4	227
9	Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids. Arthritis and Rheumatism, 2002, 46, 1544-1553.	6.7	214
10	The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Progress in Lipid Research, 2005, 44, 303-344.	11.6	201
11	Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Progress in Lipid Research, 2015, 59, 38-53.	11.6	181
12	Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica) Tj ETQq0 0 0 rg	BT4.8verlo	ock 10 Tf 50 3
13	Mechanisms of temperature adaptation in poikilotherms. FEBS Letters, 2006, 580, 5477-5483.	2.8	163
14	Biochemistry of lipid metabolism in olive and other oil fruits. Progress in Lipid Research, 2000, 39, 151-180.	11.6	148
15	Algal lipids and effect of the environment on their biochemistry. , 2009, , 1-24.		144
16	Key role of lipids in heat stress management. FEBS Letters, 2013, 587, 1970-1980.	2.8	137
17	Heat shock response in photosynthetic organisms: Membrane and lipid connections. Progress in Lipid Research, 2012, 51, 208-220.	11.6	134
18	Lipid Metabolism in Algae. Advances in Botanical Research, 1989, 16, 1-53.	1.1	133

#	Article	IF	Citations
19	Biosynthesis of triacylglycerols and volatiles in olives. European Journal of Lipid Science and Technology, 2002, 104, 564-573.	1.5	130
20	Molecular modification of triacylglycerol accumulation by over-expression of <i>DGAT1 </i> to produce canola with increased seed oil content under field conditionsThis paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada – Plant Biotechnology Institute Botany, 2009, 87, 533-543.	1.0	126
21	Can the stress protein response be controlled by â€~membrane-lipid therapy'?. Trends in Biochemical Sciences, 2007, 32, 357-363.	7.5	119
22	Plasma membranes as heat stress sensors: From lipid-controlled molecular switches to therapeutic applications. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1594-1618.	2.6	115
23	Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays in Biochemistry, 2020, 64, 401-421.	4.7	109
24	The Plant Sulpholipid—a Major Component of the Sulphur Cycle. Biochemical Society Transactions, 1979, 7, 440-447.	3.4	104
25	Nutritional and health aspects of olive oil. European Journal of Lipid Science and Technology, 2002, 104, 685-697.	1.5	104
26	Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus. Biochemical Journal, 1999, 338, 553-560.	3.7	96
27	Analogues of Thiolactomycin as Potential Antimalarial Agents. Journal of Medicinal Chemistry, 2005, 48, 5932-5941.	6.4	95
28	Algae: Critical Sources of Very Long-Chain Polyunsaturated Fatty Acids. Biomolecules, 2019, 9, 708.	4.0	92
29	Changes in the lipid content of developing seeds of Brassica napus. Phytochemistry, 1993, 32, 1411-1415.	2.9	83
30	Acetyl-CoA carboxylase exerts strong flux control over lipid synthesis in plants. Lipids and Lipid Metabolism, 1994, 1210, 369-372.	2.6	83
31	A plant metallothionein produced inE. coli. FEBS Letters, 1991, 295, 171-175.	2.8	82
32	Lipoxygenase activity in olive (Olea europaea) fruit. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 1163-1168.	1.9	82
33	Biological basis for the benefit of nutraceutical supplementation in arthritis. Drug Discovery Today, 2004, 9, 165-172.	6.4	79
34	Analogues of thiolactomycin as potential anti-malarial and anti-trypanosomal agents. Bioorganic and Medicinal Chemistry, 2004, 12, 683-692.	3.0	77
35	Membrane Regulation of the Stress Response from Prokaryotic Models to Mammalian Cells. Annals of the New York Academy of Sciences, 2007, 1113, 40-51.	3.8	76
36	Changes in Kennedy pathway intermediates associated with increased triacylglycerol synthesis in oil-seed rape. Phytochemistry, 1999, 52, 799-804.	2.9	74

#	Article	IF	Citations
37	Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly. Biochemical Journal, 2002, 364, 393-401.	3.7	74
38	Spatial and Temporal Mapping of Key Lipid Species in <i>Brassica napus</i> Seeds. Plant Physiology, 2017, 173, 1998-2009.	4.8	72
39	A Bifunctional Δ12,Δ15-Desaturase from Acanthamoeba castellanii Directs the Synthesis of Highly Unusual n-1 Series Unsaturated Fatty Acids. Journal of Biological Chemistry, 2006, 281, 36533-36541.	3.4	71
40	Effect of Irrigation on Quality Attributes of Olive Oil. Journal of Agricultural and Food Chemistry, 2009, 57, 7048-7055.	5.2	69
41	Hsp70 interactions with membrane lipids regulate cellular functions in health and disease. Progress in Lipid Research, 2019, 74, 18-30.	11.6	67
42	The synthesis of acyl lipids in plant tissues. Progress in Lipid Research, 1979, 18, 55-86.	11.6	66
43	Lipid functions in skin: Differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1679-1689.	2.6	64
44	Lipidomics reveals membrane lipid remodelling and release of potential lipid mediators during early stress responses in a murine melanoma cell line. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 1036-1047.	2.4	63
45	RISING WATER TEMPERATURES ALTER LIPID DYNAMICS AND REDUCE N-3 ESSENTIAL FATTY ACID CONCENTRATIONS IN SCENEDESMUS OBLIQUUS (CHLOROPHYTA)1. Journal of Phycology, 2011, 47, 763-774.	2.3	62
46	Fatty acid biosynthesis by a particulate preparation from germinating pea. Biochemical Journal, 1977, 168, 261-269.	3.1	61
47	Lipid composition of subcellular membranes from larvae and prepupae ofDrosophila melanogaster. Lipids, 1992, 27, 984-987.	1.7	61
48	Incorporation of Carbon Dioxide, Acetate and Sulphate into the Glycerolipids of Vicia fabaLeaves. Hoppe-Seyler's Zeitschrift FÃ1/4r Physiologische Chemie, 1977, 358, 897-908.	1.6	60
49	Heat Stress Causes Spatially-Distinct Membrane Re-Modelling in K562 Leukemia Cells. PLoS ONE, 2011, 6, e21182.	2.5	59
50	Changes in the acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions. Biochemical Journal, 1979, 181, 339-345.	3.7	58
51	Lipid metabolism in plants. Critical Reviews in Plant Sciences, 1989, 8, 1-43.	5.7	58
52	Changes in virgin olive oil characteristics during different storage conditions. European Journal of Lipid Science and Technology, 2010, 112, 906-914.	1.5	57
53	Lipids and lipid metabolism in the brown alga, Fucus serratus. Phytochemistry, 1984, 23, 2469-2473.	2.9	55
54	Lipid composition of the brown algae fucus vesiculosus and Ascophyllum nodosum. Phytochemistry, 1992, 31, 3397-3403.	2.9	55

#	Article	IF	CITATIONS
55	Studies on the regulation of lipid biosynthesis in plants: application of control analysis to soybean. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1488-1500.	2.6	55
56	Glycolytic Breakdown of Sulfoquinovose in Bacteria: a Missing Link in the Sulfur Cycle. Applied and Environmental Microbiology, 2003, 69, 6434-6441.	3.1	54
57	Leaf senescence in a non-yellowing mutant of Festuca pratensis. Planta, 1982, 156, 152-157.	3.2	53
58	Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves. Biochemical Journal, 1996, 318, 997-1006.	3.7	53
59	Effects ofn-3 fatty acids on cartilage metabolism. Proceedings of the Nutrition Society, 2002, 61, 381-389.	1.0	53
60	Abscisic acid modifies the changes in lipids brought about by water stress in the moss Atrichum androgynum. New Phytologist, 2002, 156, 255-264.	7.3	53
61	A mandelamide pesticide alters lipid metabolism in Phytophthora infestans. New Phytologist, 2003, 158, 345-353.	7.3	52
62	Acylâ€Trafficking During Plant Oil Accumulation. Lipids, 2015, 50, 1057-1068.	1.7	52
63	Radiolabelling studies of acyl lipids in developing seeds of Brassica napus: Use of [1-14C]acetate precursor. Phytochemistry, 1993, 33, 329-333.	2.9	51
64	Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 524-537.	2.4	51
65	Lipids of the marine red algae, Chondrus crispus and Polysiphonia lanosa. Phytochemistry, 1989, 28, 399-405.	2.9	50
66	Phospholipid metabolism in the brown alga, Fucus serratus. Phytochemistry, 1982, 21, 569-573.	2.9	49
67	The short chain condensing enzyme has a widespread occurrence in the fatty acid synthetases from higher plants. Phytochemistry, 1990, 29, 3797-3799.	2.9	49
68	Synthesis of Phospholipids by Human Peritoneal Mesothelial Cells. Peritoneal Dialysis International, 1994, 14, 348-355.	2.3	48
69	The utilization and desaturation of oleate and linoleate during glycerolipid biosynthesis in olive (Olea europaea L.) callus cultures. Journal of Experimental Botany, 2008, 59, 2425-2435.	4.8	47
70	Environmental factors which can alter lipid metabolism. Progress in Lipid Research, 1994, 33, 193-202.	11.6	46
71	Lipid synthesis by germinating soya bean. Phytochemistry, 1975, 14, 1985-1990.	2.9	45
72	Metabolic control analysis reveals an important role for diacylglycerol acyltransferase in olive but not in oil palm lipid accumulation. FEBS Journal, 2005, 272, 5764-5770.	4.7	45

#	Article	IF	CITATIONS
73	Analysis of volatiles from callus cultures of olive Olea europaea. Phytochemistry, 1998, 47, 1253-1259.	2.9	44
74	Using lipidomics to reveal details of lipid accumulation in developing seeds from oilseed rape (Brassica napus L.). Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 339-348.	2.4	44
75	The transmembrane distribution of galactolipids in chloroplast thylakoids is universal in a wide variety of temperate climate plants. Photosynthesis Research, 1987, 11, 3-13.	2.9	43
76	Lipoxygenase pathway in olive callus cultures (Olea europaea). Phytochemistry, 2000, 53, 13-19.	2.9	43
77	Metabolic control analysis of developing oilseed rape (<i>Brassica napus</i> cv Westar) embryos shows that lipid assembly exerts significant control over oil accumulation. New Phytologist, 2012, 196, 414-426.	7.3	43
78	Light-Induced Changes in Fatty Acid Profiles of Specific Lipid Classes in Several Freshwater Phytoplankton Species. Frontiers in Plant Science, 2016, 7, 264.	3.6	43
79	Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus. Biochemical Journal, 1999, 338, 553.	3.7	42
80	Algal Lipids and Their Metabolism. , 2013, , 17-36.		42
81	Synthesis of molecular species of phosphatidylcholine and phosphatidylethanolamine by germinating soya bean. Phytochemistry, 1976, 15, 1459-1463.	2.9	41
82	Acetyl-CoA Carboxylase-a Graminicide Target Site. Pest Management Science, 1997, 50, 67-71.	0.4	41
83	Dihomo- \hat{l}^3 -linolenic acid inhibits several key cellular processes associated with atherosclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2538-2550.	3.8	41
84	Metabolism of trans-3-Hexadecenoic Acid in Broad Bean. FEBS Journal, 1975, 50, 325-334.	0.2	39
85	Lipid Metabolism in the Brown Marine AlgaeFucus vesiculosusandAscophyllum nodosum. Journal of Experimental Botany, 1993, 44, 1203-1210.	4.8	39
86	The regulation of triacylglycerol biosynthesis in cocoa (Theobroma cacao) L Planta, 1991, 184, 279-284.	3.2	38
87	Use of metabolic control analysis to give quantitative information on control of lipid biosynthesis in the important oil crop, <i>Elaeis guineensis</i> (oilpalm). New Phytologist, 2009, 184, 330-339.	7.3	38
88	The in vitro delivery of NSAIDs across skin was in proportion to the delivery of essential fatty acids in the vehicleâ€"evidence that solutes permeate skin associated with their solvation cages?. International Journal of Pharmaceutics, 2003, 261, 165-169.	5 . 2	37
89	In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1, DGAT2, DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis. Plant Science, 2018, 275, 84-96.	3.6	37
90	Membrane Lipids in Algae. , 1998, , 53-64.		36

#	Article	IF	Citations
91	Lead and copper effects on lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochemistry, 2006, 67, 1731-1739.	2.9	36
92	Plant Lipid Metabolism., 1997,, 237-272.		35
93	Increasing seed oil content in Brassica species through breeding and biotechnology. Lipid Technology, 2013, 25, 182-185.	0.3	35
94	BIOSYNTHESIS OF SMALL MOLECULES IN CHLOROPLASTS OF HIGHER PLANTS. Biological Reviews, 1976, 51, 365-405.	10.4	33
95	Effect of thiocarbamate herbicides on fatty acid synthesis by potato. Phytochemistry, 1976, 15, 1507-1509.	2.9	33
96	Differential responses of a range of photosynthetic tissues to a substituted pyridazinone, sandoz 9785. Specific effects on fatty acid desaturation. Phytochemistry, 1985, 24, 1923-1929.	2.9	33
97	Novel inhibitors of the condensing enzymes of the Type II fatty acid synthase of pea (Pisum sativum). Biochemical Journal, 2000, 347, 205-209.	3.7	33
98	Control mechanisms operating for lipid biosynthesis differ in oil-palm (Elaeis guineensis Jacq.) and olive (Olea europaea L.) callus cultures. Biochemical Journal, 2002, 364, 385-391.	3.7	32
99	Lysophospholipid metabolism facilitates Toll-like receptor 4 membrane translocation to regulate the inflammatory response. Journal of Leukocyte Biology, 2008, 84, 86-92.	3.3	31
100	Biochemistry of high stearic sunflower, a new source of saturated fats. Progress in Lipid Research, 2014, 55, 30-42.	11.6	31
101	Lipid metabolism in the moss Rhytidiadelphus squarrosus (Hedw.) Warnst. from leadâ€contaminated and nonâ€contaminated populations. Journal of Experimental Botany, 2002, 53, 455-463.	4.8	30
102	Lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochemistry, 2003, 64, 209-217.	2.9	30
103	Eicosapentaenoic Acid and Docosahexaenoic Acid Regulate Modified LDL Uptake and Macropinocytosis in Human Macrophages. Lipids, 2011, 46, 1053-1061.	1.7	30
104	Regulation and enhancement of lipid accumulation in oil crops: The use of metabolic control analysis for informed genetic manipulation. European Journal of Lipid Science and Technology, 2013, 115, 1239-1246.	1.5	30
105	Lipid metabolism in green leaves of developing monocotyledons. Planta, 1978, 139, 267-272.	3.2	29
106	The action of herbicides on fatty acid biosynthesis and elongation in barley and cucumber. Pest Management Science, 2010, 66, 794-800.	3.4	29
107	Synthesis of sulphoquinovosyl diacylglycerol by higher plants. Lipids and Lipid Metabolism, 1975, 398, 224-230.	2.6	28
108	Solubilisation, partial purification and properties of acyl-CoA: glycerol-3-phosphate acyltransferase from avocado (Persea americana) fruit mesocarp. Lipids and Lipid Metabolism, 1995, 1257, 1-10.	2.6	28

#	Article	IF	CITATIONS
109	Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications. Sub-Cellular Biochemistry, 2016, 86, 1-18.	2.4	28
110	Lipid metabolism in germinating seeds. Lipids and Lipid Metabolism, 1979, 575, 102-111.	2.6	27
111	The subcellular localisation of absorbed copper in Fucus. Physiologia Plantarum, 1986, 66, 692-698.	5.2	27
112	Lipid metabolism in the red marine algae Chondrus crispus and Polysiphonia lanosa as modified by temperature. Phytochemistry, 1989, 28, 2053-2058.	2.9	27
113	Olive Oil Qualitative Parameters after Orchard Irrigation with Saline Water. Journal of Agricultural and Food Chemistry, 2009, 57, 1421-1425.	5.2	27
114	Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Progress in Lipid Research, 2022, 88, 101181.	11.6	27
115	Inhibition of fatty acid elongation provides a basis for the action of the herbicide, ethofumesate, on surface wax formation. Phytochemistry, 1992, 31, 1155-1159.	2.9	26
116	The regulation of triacylglycerol biosynthesis in cocoa (Theobroma cacao) L Planta, 1991, 184, 279-284.	3.2	26
117	Purification of acyl hydrolase enzymes from the leaves of Phaseolus multiflorus. Phytochemistry, 1979, 18, 1793-1797.	2.9	24
118	Adaptive changes in the lipids of higher-plant membranes. Biochemical Society Transactions, 1983, 11, 343-346.	3.4	24
119	Changes in Endogenous Fatty Acids and Lipid Synthesis Associated with Copper Pollution inFucusspp. Journal of Experimental Botany, 1985, 36, 663-669.	4.8	24
120	The site of action of some selective graminaceous herbicides is identified as acetyl-CoA carboxylase. Trends in Biochemical Sciences, 1988, 13, 330-331.	7.5	24
121	Changes in Membrane Fatty Acid Composition and ?12-Desaturase Activity during Growth of Acanthamoeba castellanii in Batch Culture. Journal of Eukaryotic Microbiology, 1994, 41, 396-401.	1.7	23
122	Contrasting Effects of nâ€3 and nâ€6 Fatty Acids on Cyclooxygenaseâ€2 in Model Systems for Arthritis. Lipids, 2009, 44, 889-96.	1.7	23
123	Properties of acyl hydrolase enzymes from Phaseolus multiflorus leaves. Phytochemistry, 1980, 19, 2281-2285.	2.9	22
124	Acyl lipid metabolism in the oleaginous yeastRhodotorula gracilis (CBS 3043). Lipids, 1989, 24, 715-720.	1.7	22
125	Temperature-induced Changes in the Synthesis of Unsaturated Fatty Acids byAcanthamoeba castellanii. Journal of Protozoology, 1991, 38, 532-536.	0.8	22
126	Purification and characterisation of acyl-CoA: glycerol 3-phosphate acyltransferase from oil palm (Elaeis guineensis) tissues. Planta, 2000, 210, 318-328.	3.2	22

#	Article	IF	Citations
127	Catabolism of sulphoquinovosyl diacylglycerol by an enzyme preparation from Phaseolus multiflorus. Phytochemistry, 1977, 16, 651-654.	2.9	21
128	Use of [2-3H]glycerol precursor in radiolabelling studies of acyl lipids in developing seeds of Brassica napus. Phytochemistry, 1993, 34, 69-73.	2.9	21
129	Regulation of lipid synthesis in oil crops. FEBS Letters, 2013, 587, 2079-2081.	2.8	20
130	Strategies for coping with low environmental temperatures. Trends in Biochemical Sciences, 1991, 16, 126-127.	7.5	19
131	Conditions for the assay of glutamate semialdehyde aminotransferase that overcome the problem of substrate instability. Analytical Biochemistry, 1991, 198, 43-46.	2.4	19
132	Acylation of lysophosphatidylcholine plays a key role in the response of monocytes to lipopolysaccharide. FEBS Journal, 2003, 270, 2782-2788.	0.2	19
133	Effect of culture conditions on the lipid composition of Phytophthora infestans. New Phytologist, 2003, 158, 337-344.	7.3	19
134	Catabolism of Sulpholipid by an Enzyme from the Leaves of <i>Phaseolus multiflorus</i> . Biochemical Society Transactions, 1977, 5, 1302-1304.	3.4	18
135	Lipid Metabolism inFucus serratusas Modified by Environmental Factors. Journal of Experimental Botany, 1984, 35, 1359-1368.	4.8	18
136	Characterization of fatty acid elongase enzymes from germinating pea seeds. Phytochemistry, 1998, 48, 1295-1304.	2.9	18
137	Lipid composition of Botrytis cinerea and inhibition of its radiolabelling by the fungicide iprodione. New Phytologist, 2003, 160, 199-207.	7.3	18
138	Protective Role for Properdin in Progression of Experimental Murine Atherosclerosis. PLoS ONE, 2014, 9, e92404.	2.5	18
139	Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory. Neurobiology of Learning and Memory, 2016, 130, 118-128.	1.9	18
140	Comparative Transcriptomics Analysis of Brassica napus L. during Seed Maturation Reveals Dynamic Changes in Gene Expression between Embryos and Seed Coats and Distinct Expression Profiles of Acyl-CoA-Binding Proteins for Lipid Accumulation. Plant and Cell Physiology, 2019, 60, 2812-2825.	3.1	18
141	Some characteristics of soluble fatty acid synthesis in germinating pea seeds. Lipids and Lipid Metabolism, 1977, 489, 15-24.	2.6	17
142	Effect of Substituted Pyridazinones on Chloroplast Structure and Lipid Metabolism in Greening Barley Leaves. Journal of Experimental Botany, 1983, 34, 1089-1100.	4.8	17
143	Purification of ctp: cholinephosphate cytidylyl-transferase from pea stems. Phytochemistry, 1985, 24, 2523-2527.	2.9	17
144	Involvement of Chloroplast Lipids in the Reaction of Plants Submitted to Stress., 1998,, 287-302.		17

#	Article	IF	CITATIONS
145	Glucosamine Hydrochloride but Not Chondroitin Sulfate Prevents Cartilage Degradation and Inflammation Induced by Interleukin-1α in Bovine Cartilage Explants. Cartilage, 2016, 7, 70-81.	2.7	17
146	Increase in lysophosphatidate acyltransferase activity in oilseed rape (<i>Brassica napus</i>) increases seed triacylglycerol content despite its low intrinsic flux control coefficient. New Phytologist, 2019, 224, 700-711.	7.3	17
147	Changes in the lipid metabolism of fucus serratus and fucus vesiculosus caused by copper. Lipids and Lipid Metabolism, 1984, 796, 119-122.	2.6	16
148	Direct identification and quantification of the cofactor in glutamate semialdehyde aminotransferase from pea leaves. FEBS Letters, 1991, 283, 4-6.	2.8	16
149	Interaction of thiocarbamate herbicides with fatty acid synthesis in germinating peas and their microsomal fractions. Phytochemistry, 1991, 30, 2883-2887.	2.9	16
150	Glycerolipid biosynthesis by microsomal fractions from olive fruits. Phytochemistry, 1992, 31, 129-134.	2.9	16
151	Susceptibilities of Different Test Systems from Maize (Zea mays),Poa annua,andFestuca rubrato Herbicides That Inhibit the Enzyme Acetyl-Coenzyme A Carboxylase. Pesticide Biochemistry and Physiology, 1996, 55, 129-139.	3.6	16
152	Glycerolipid synthesis by microsomal fractions from Olea europaea fruits and tissue cultures. Phytochemistry, 1997, 46, 265-272.	2.9	16
153	Oxygen induces fatty acid (n-6)-desaturation independently of temperature inAcanthamoeba castellanii. FEBS Letters, 1998, 425, 171-174.	2.8	16
154	Conserved valproic-acid-induced lipid droplet formation in <i>Dictyostelium</i> and human hepatocytes identifies structurally active compounds. DMM Disease Models and Mechanisms, 2012, 5, 231-240.	2.4	16
155	Nutritional lipid supply can control the heat shock response of B16 melanoma cells in culture. Molecular Membrane Biology, 2012, 29, 274-289.	2.0	16
156	The role of n-3 dietary polyunsaturated fatty acids in brain function and ameliorating Alzheimer's disease: Opportunities for biotechnology in the development of nutraceuticals. Biocatalysis and Agricultural Biotechnology, 2012, 1, 159-166.	3.1	16
157	Fatty acid synthesis in aged potato slices. Phytochemistry, 1976, 15, 1501-1506.	2.9	15
158	The effect of indoleacetic acid on phospholipid metabolism in pea stems. Phytochemistry, 1983, 22, 2421-2425.	2.9	15
159	The effect of trace metals on lipid metabolism in the brown alga Fucus serratus. Biochemical Society Transactions, 1983, 11, 394-395.	3.4	15
160	[44] Phosphoglycerides of mitochondrial membranes. Methods in Enzymology, 1987, , 475-485.	1.0	15
161	Oxygen induction of a novel fatty acid nâ^6 desaturase in the soil protozoon, Acanthamoeba castellanii. Biochemical Journal, 2002, 368, 57-67.	3.7	15
162	The Microaerophilic Flagellate, <i>Trichomonas vaginalis</i> , Contains Unusual Acyl Lipids but no Detectable Cardiolipin. Journal of Eukaryotic Microbiology, 2009, 56, 52-57.	1.7	15

#	Article	IF	CITATIONS
163	Induction of expression of a 14-3-3 gene in response to copper exposure in the marine alga, Fucus vesiculosus. Ecotoxicology, 2012, 21, 124-138.	2.4	15
164	The action of protamine on clearing factor lipase and on plasma triglyceride metabolism. Lipids and Lipid Metabolism, 1974, 337, 225-238.	2.6	14
165	Preferential π–π complexation between tamoxifen and borage oil/γ linolenic acid: Transcutaneous delivery and NMR spectral modulation. International Journal of Pharmaceutics, 2005, 302, 47-55.	5.2	14
166	Lipid Classes and Fatty Acid Patterns are Altered in the Brain of γâ€Synuclein Null Mutant Mice. Lipids, 2011, 46, 121-130.	1.7	14
167	Modification of Oil Crops to Produce Fatty Acids for Industrial Applications. , 2017, , 187-236.		14
168	Characterization of Oil Palm Acyl-CoA-Binding Proteins and Correlation of Their Gene Expression with Oil Synthesis. Plant and Cell Physiology, 2020, 61, 735-747.	3.1	14
169	Lipid Synthesis. , 1991, , 57-94.		14
170	Alterations in lipid metabolism caused by illumination of the marine red algae Chondrus crispus and Polysiphonia lanosa. Phytochemistry, 1989, 28, 3295-3300.	2.9	13
171	Interferon-Î ³ -Stimulated Uptake and Turnover of Linoleate and Arachidonate in Macrophages: A Possible Pathway for Hypersensitivity to Endotoxin. Cellular Immunology, 1993, 152, 59-71.	3.0	13
172	Graminicide insensitivity correlates with herbicide-binding co-operativity on acetyl-CoA carboxylase isoforms. Biochemical Journal, 2003, 375, 415-423.	3.7	13
173	Characterization and partial purification of acyl-CoA:glycerol 3-phosphate acyltransferase from sunflower (Helianthus annuus L.) developing seeds. Plant Physiology and Biochemistry, 2010, 48, 73-80.	5.8	13
174	Effect of a substituted pyridazinone, compound BASF 13â€"338 on membrane lipid synthesis in photosynthetic tissues. Biochemical Society Transactions, 1980, 8, 119-120.	3.4	12
175	Fatty Acid Synthesis in Soluble Fractions from Olive (Olea europaea) Fruits. Journal of Plant Physiology, 1992, 140, 402-408.	3.5	12
176	Simultaneous permeation of tamoxifen and \hat{l}^3 linolenic acid across excised human skin. Further evidence of the permeation of solvated complexes. International Journal of Pharmaceutics, 2004, 271, 305-309.	5.2	12
177	Characterisation of lipoxygenase isoforms from olive callus cultures. Phytochemistry, 2008, 69, 2532-2538.	2.9	12
178	Recent Environmental Concerns and Lipid Metabolism. , 1995, , 361-368.		12
179	Radiolabelling studies of fatty acids in pisum sativum and Vicia faba leaves at different temperatures. Phytochemistry, 1979, 18, 1811-1814.	2.9	11
180	Pulmonary surfactant: its isolation, characterization and function. Biochemical Society Transactions, 1985, 13, 1079-1081.	3.4	11

#	Article	IF	CITATIONS
181	Lipid characterization and metabolism in two red marine algae. Biochemical Society Transactions, 1986, 14, 148-149.	3.4	11
182	Changes in the lipid composition of developing wheat seeds. Phytochemistry, 1986, 25, 811-815.	2.9	11
183	Permeability of liposomes composed of binary mixtures of monogalactosyldiacylglycerol and digalactosyldiacylglycerol. Biochimica Et Biophysica Acta - Biomembranes, 1988, 939, 430-440.	2.6	11
184	Isolation, characterisation and expression of a cDNA for pea cholinephosphate cytidylyltransferase. Plant Molecular Biology, 1998, 37, 179-185.	3.9	11
185	l̂ ² -Ketoacyl-acyl carrier protein synthaseÂlll from pea (Pisum sativum L.): properties, inhibition by a novel thiolactomycin analogue and isolation of a cDNA clone encoding the enzyme. Planta, 2003, 216, 752-761.	3.2	11
186	Temperature Stress. Annals of the New York Academy of Sciences, 2007, 1113, 52-57.	3.8	11
187	Novel inhibitors of the condensing enzymes of the Type II fatty acid synthase of pea (Pisum sativum). Biochemical Journal, 2000, 347, 205.	3.7	11
188	Investigation of the transmembrane distribution of thylakoid lipids. Biochemical Society Transactions, 1982, 10, 249-250.	3.4	10
189	Lipids and lipid metabolism in the marine alga Enteromorpha intestinalis. Phytochemistry, 1993, 34, 969-972.	2.9	10
190	Effects of pebulate and pebulate sulphoxide on very long chain fatty acid biosynthesis. Phytochemistry, 1998, 48, 441-446.	2.9	10
191	Comparative aspects of lipid metabolism in marine algae. Biochemical Society Transactions, 1987, 15, 482-483.	3.4	9
192	Diflufenican, a carotenogenesis inhibitor, also reduces acyl lipid synthesis. Pesticide Biochemistry and Physiology, 1992, 43, 14-21.	3.6	9
193	Characteristics of two forms of acetyl-CoA carboxylase from maize leaves. Biochemical Society Transactions, 1994, 22, 261S-261S.	3.4	9
194	Fatty acid elongation is important in the activity of thiocarbamate herbicides and in safening by dichlormid. Journal of Experimental Botany, 2003, 54, 1289-1294.	4.8	9
195	Complex lipid biosynthesis and its manipulation in plants. , 2007, , 253-279.		9
196	Modification of Palm Oil for Antiâ€Inflammatory Nutraceutical Properties. Lipids, 2009, 44, 581-592.	1.7	9
197	Overexpression of phospholipid: diacylglycerol acyltransferase in <i>Brassica napus</i> results in changes in lipid metabolism and oil accumulation. Biochemical Journal, 2022, 479, 805-823.	3.7	9
198	\hat{l}_{\pm} -hydroxylation of newly synthesised fatty acids by a soluble fraction from germinating pea. Lipids and Lipid Metabolism, 1979, 573, 218-221.	2.6	8

#	Article	IF	CITATIONS
199	The role of Coenzyme A in lipid synthesis by a particulate fraction from germinating peas. Phytochemistry, 1982, 21, 1931-1934.	2.9	8
200	Trans-bilayer lipid interactions. Trends in Biochemical Sciences, 1989, 14, 2-4.	7.5	8
201	A new class of herbicide which inhibits acetyl-CoA carboxylase in sensitive plant species. Phytochemistry, 1990, 29, 3743-3747.	2.9	8
202	Lipid metabolism in the mossDicranum scoparium: effect of light conditions and heavy metals on the accumulation of acetylenic triacylglycerols. Physiologia Plantarum, 2002, 116, 441-450.	5.2	8
203	Use of plant cell cultures to study graminicide effects on lipid metabolism. Phytochemistry, 2003, 63, 533-541.	2.9	8
204	Lipid Metabolism in Olive: Biosynthesis of Triacylglycerols and Aroma Components., 2013,, 97-127.		8
205	Thiocarbamates and surface lipid synthesis. Biochemical Society Transactions, 1994, 22, 621-624.	3.4	7
206	Re-evaluation of plant sulpholipid labelling from UDP-[14C]glucose in pea chloroplasts. Biochemical Journal, 1999, 344, 185-187.	3.7	7
207	The activities of monocyte lysophosphatidylcholine acyltransferase and coenzyme A-independent transacylase are changed by the inflammatory cytokines tumor necrosis factor alpha and interferon gamma. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1733, 232-238.	2.4	7
208	Enzymes of Fatty Acid Synthesis. Methods in Plant Biochemistry, 1990, , 193-217.	0.2	7
209	Fatty acid metabolism by a particulate fraction from germinating peas. Phytochemistry, 1983, 22, 849-854.	2.9	6
210	Solubilization and studies of cereal lipases. Biochemical Society Transactions, 1989, 17, 687-688.	3.4	6
211	Understanding liposomal properties to aid their clinical usage. Trends in Biochemical Sciences, 1992, 17, 203-204.	7.5	6
212	Glycerolipid synthesis by microsomal fractions from fruits and tissue cultures of olives. Phytochemistry, 1997, 46, 855-862.	2.9	6
213	Membranes in Stress and Adaptation. Annals of the New York Academy of Sciences, 1998, 851, 162-168.	3.8	6
214	Informed metabolic engineering of oil crops using control analysis. Biocatalysis and Agricultural Biotechnology, 2014, 3, 49-52.	3.1	6
215	Biosynthesis of Phosphatidylcholine and Phosphatidylethanolamine by Germinating Soya Bean. Biochemical Society Transactions, 1976, 4, 50-52.	3.4	5
216	Current Problems in the Synthesis of Leaf Acyl Lipids. Biochemical Society Transactions, 1977, 5, 1259-1263.	3.4	5

#	Article	IF	CITATIONS
217	Metabolic Effects on the Lung, Liver and Brain Following Ingestion of Imipramine and Chlorpromazine by the Rat. Drug and Chemical Toxicology, 1983, 6, 135-153.	2.3	5
218	The carbon flux to triacylglycerol in maturing oilseed rape embryos. Biochemical Society Transactions, 1994, 22, 203S-203S.	3 . 4	5
219	Effect of thiolactomycin on fatty acid synthesis in peas. Phytochemistry, 1995, 39, 511-514.	2.9	5
220	Effects of carbon dioxide concentration and temperature on lipid synthesis by young wheat leaves. Phytochemistry, 1997, 45, 243-250.	2.9	5
221	The effect of dimethoate on lipid biosynthesis in olive (Olea europaea) callus cultures. Phytochemistry, 1998, 47, 735-741.	2.9	5
222	Naphthalic anhydride prevents inhibition of fatty acid elongation by thiocarbamates. Phytochemistry, 1998, 49, 1897-1903.	2.9	5
223	Biochemical studies of oil biosynthesis in olive (<i>Olea europea</i>) and oil palm (<i>Elaeis) Tj ETQq1 1 0.7843</i>	314 rgBT / 3:4	Overlock 10 Tf
224	Lipid Biosynthesis in Olives. , 2000, , 61-77.		5
225	Tailoring lipid synthesis in oil crops. Inform, 2015, 26, 78-83.	0.1	5
226	Purification and properties of CTP:cholinephosphate cytidylyltransferase from pea (<i>Pisum) Tj ETQq0 0 0 rgB1</i>	Oyerloc	k 10 ₄ Tf 50 382
226	Purification and properties of CTP:cholinephosphate cytidylyltransferase from pea (<i>Pisum) Tj ETQq0 0 0 rgBT Fat synthesis in cacao (<i>Theobroma cacao</i>). Biochemical Society Transactions, 1989, 17, 688-689.</i>	Oyerlock	k 10 ₄ Tf 50 382
		5.4	4
227	Fat synthesis in cacao (<i>Theobroma cacao</i>). Biochemical Society Transactions, 1989, 17, 688-689. Graminicide-binding by acetyl-CoA carboxylase from Poa annua leaves. Phytochemistry, 1997, 44,	3.4	4
227	Fat synthesis in cacao (<i>Theobroma cacao</i>). Biochemical Society Transactions, 1989, 17, 688-689. Graminicide-binding by acetyl-CoA carboxylase from Poa annua leaves. Phytochemistry, 1997, 44, 399-405. Re-evaluation of plant sulpholipid labelling from UDP-[14C]glucose in pea chloroplasts. Biochemical	3.4	4
227 228 229	Fat synthesis in cacao (<i>Theobroma cacao</i>). Biochemical Society Transactions, 1989, 17, 688-689. Graminicide-binding by acetyl-CoA carboxylase from Poa annua leaves. Phytochemistry, 1997, 44, 399-405. Re-evaluation of plant sulpholipid labelling from UDP-[14C]glucose in pea chloroplasts. Biochemical Journal, 1999, 344, 185. Plant acyl lipids: evolutionary curiosities or functional constituents?. Trends in Biochemical	3.4 2.9	4 4
227 228 229 230	Fat synthesis in cacao (<i>Theobroma cacao </i>). Biochemical Society Transactions, 1989, 17, 688-689. Graminicide-binding by acetyl-CoA carboxylase from Poa annua leaves. Phytochemistry, 1997, 44, 399-405. Re-evaluation of plant sulpholipid labelling from UDP-[14C]glucose in pea chloroplasts. Biochemical Journal, 1999, 344, 185. Plant acyl lipids: evolutionary curiosities or functional constituents?. Trends in Biochemical Sciences, 1976, 1, 253-256. Fatty Acid Elongation by Preparations from <i>Pisum sativum </i>). Biochemical Society Transactions,	3.4 2.9 3.7 7.5	4 4 3
227 228 229 230	Fat synthesis in cacao (<i>Theobroma cacao</i>). Biochemical Society Transactions, 1989, 17, 688-689. Graminicide-binding by acetyl-CoA carboxylase from Poa annua leaves. Phytochemistry, 1997, 44, 399-405. Re-evaluation of plant sulpholipid labelling from UDP-[14C]glucose in pea chloroplasts. Biochemical Journal, 1999, 344, 185. Plant acyl lipids: evolutionary curiosities or functional constituents?. Trends in Biochemical Sciences, 1976, 1, 253-256. Fatty Acid Elongation by Preparations from <i>Pisum sativum</i>). Biochemical Society Transactions, 1977, 5, 287-289.	3.4 2.9 3.7 7.5	4 4 3 3

#	Article	IF	CITATIONS
235	Effect of growth temperature on fatty acid biosynthesis in <i>Acanthamoeba castellanii</i> Biochemical Society Transactions, 1990, 18, 627-627.	3.4	3
236	Evaluation of inhibitors of lipolytic enzymes. Trends in Biochemical Sciences, 1990, 15, 409-410.	7.5	3
237	Degradation of human and rat surfactant apoprotein by neutrophil elastase and cathepsin G. Biochemical Society Transactions, 1993, 21, 206S-206S.	3.4	3
238	The effect of thiolactomycin on fatty acid synthesis in peas (Pisum sativum, cv Onward). Biochemical Society Transactions, 1994, 22, 202S-202S.	3.4	3
239	Effect of drought on volatile production by the lipoxygenase pathway in olive fruit. Biochemical Society Transactions, 1997, 25, 499S-499S.	3.4	3
240	Reaction products of the lipoxygenase pathway in olive tissue cultures. Biochemical Society Transactions, 1998, 26, S154-S154.	3.4	3
241	Changes in CTP:cholinephosphate cytidylyltransferase protein levels in pea stems treated with indole-3-acetic acid. Phytochemistry, 1986, 26, 81-83.	2.9	2
242	Effects of heavy metals on lipid metabolism in marine algae. Biochemical Society Transactions, 1988, 16, 275-276.	3.4	2
243	Effect of a Safener Towards Thiocarbamates on Plant Lipid Metabolism. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1991, 46, 931-933.	1.4	2
244	Lipid metabolism during seed development in oilseed rape (<i>Brassica napus</i> L. cv. Shiralee). Biochemical Society Transactions, 1991, 19, 243S-243S.	3.4	2
245	Glycerol 3-phosphate acylation by microsomal fractions from avocado mesocarp. Biochemical Society Transactions, 1992, 20, 169S-169S.	3.4	2
246	Influence of alterations in environmental CO2 and temperature on wheat grain lipids. Biochemical Society Transactions, 1993, 21, 182S-182S.	3.4	2
247	The effects of inflammatory cytokines on acyl coenzymeA-dependent acyltransferase. Biochemical Society Transactions, 1997, 25, 496S-496S.	3.4	2
248	Characteristics of wheat seed lipase. Biochemical Society Transactions, 1998, 26, S152-S152.	3.4	2
249	The effects of Iprodione on the lipid metabolism of <i>Botrytis cinerea</i> Biochemical Society Transactions, 1998, 26, S155-S155.	3.4	2
250	Inspired by lipids (the Chevreul Award Lecture 2014). European Journal of Lipid Science and Technology, 2014, 116, 1259-1267.	1.5	2
251	Working with Randy: The Diacylglycerol Acyltransferase Story. Lipids, 2020, 55, 419-423.	1.7	2
252	Biosynthesis. , 1984, , 71-117.		2

#	Article	IF	Citations
253	The Utilization of [3H]Leucine and [14C]Hexadecanoic Acid by the Isolated Perfused Rabbit Lung for Biosynthesis of Radiolabelled Pulmonary Surfactant. Biochemical Society Transactions, 1977, 5, 1310-1312.	3.4	1
254	Lipid metabolism in developing wheat (<i>Triticum aestivum</i>) seeds. Biochemical Society Transactions, 1980, 8, 533-533.	3.4	1
255	Inhibition of fatty acid biosynthesis by metronidazole. Biochemical Society Transactions, 1980, 8, 535-536.	3.4	1
256	Metabolism of lipids during chloroplast differentiation in barley (<i>Hordeum vulgare</i>). Biochemical Society Transactions, 1980, 8, 534-534.	3.4	1
257	Effects of indole-3-acetic acid on phosphatidylcholine metabolism in pea (Pisum sativum L.) stems. Biochemical Society Transactions, 1982, 10, 248-249.	3.4	1
258	The control of CTP: cholinephosphate cytidylyltransferase activity in pea (Pisum sativum L.) stems. Biochemical Society Transactions, 1986, 14, 710-711.	3.4	1
259	Pulmonary surfactant biosynthesis: studies in vivo and in vitro. Biochemical Society Transactions, 1987, 15, 480-481.	3.4	1
260	Inhibition of fatty acid synthesis in plants by a selective herbicide, fluazifop. Biochemical Society Transactions, 1988, 16, 277-278.	3.4	1
261	Differential sensitivity of lipid metabolism in monocotyledons to grass-specific herbicides. Biochemical Society Transactions, 1993, 21, 183S-183S.	3.4	1
262	The inhibition of fatty acid elongation by a thiocarbamate herbicide and its sulphoxide. Biochemical Society Transactions, 1993, 21, 184S-184S.	3.4	1
263	Growth-dependent changes of \hat{l} "12-desaturase activity and unsaturation of membrane fatty acids in <i>Acanthamoeba castellanii</i> i>. Biochemical Society Transactions, 1994, 22, 200S-200S.	3.4	1
264	Plant fatty acid elongation: sensitivity to thiocarbamate herbicides and their sulphoxides. Biochemical Society Transactions, 1994, 22, 260S-260S.	3.4	1
265	Effects of n-3 fatty acids on cartilage metabolism. Proceedings of the Nutrition Society, 2006, 65, 434.	1.0	1
266	The Control of CTP: Cholinephosphate Cytidylyltransferase in Pea Stems., 1987,, 333-336.		1
267	Molecular Strategies for Increasing Seed Oil Content. , 2009, , 3-17.		1
268	Research with a purpose. Inform, 2016, 27, 28-31.	0.1	1
269	Transgenic manipulation of triacylglycerol biosynthetic enzymes in B. napus alters lipid-associated gene expression and lipid metabolism. Scientific Reports, 2022, 12, 3352.	3.3	1
270	t-3-Hexadecenoic Acid in Broad Bean. Biochemical Society Transactions, 1974, 2, 1089-1091.	3.4	0

#	Article	IF	CITATIONS
271	Changes in Fatty Acid Synthesis during Leaf Development. Biochemical Society Transactions, 1978, 6, 598-600.	3.4	0
272	Fatty acid elongation by the microsomal fraction from germinating pea ($<$ i>Pisum sativum $<$ i>L.). Biochemical Society Transactions, 1980, 8, 120-121.	3.4	0
273	Studies on the function of chloroplast acyl lipids. Biochemical Society Transactions, 1982, 10, 247-248.	3.4	0
274	Three separate elongation enzymes for very-long-chain fatty acid synthesis in potato. Biochemical Society Transactions, 1985, 13, 1244-1245.	3.4	0
275	Lipid Metabolism in Two Species of Red Marine Algae as Modified by Environmental Factors. , 1987, , 657-660.		0
276	Surfactant metabolism: the role of specific apoproteins. Biochemical Society Transactions, 1988, 16, 276-276.	3.4	0
277	Changes in fatty acid synthesis during temperature adaptation in <i>Rhodobacter sphaeroides</i> Biochemical Society Transactions, 1989, 17, 689-690.	3.4	O
278	Lipid biochemistry of tissue cultures of oil-seed rape. Biochemical Society Transactions, 1990, 18, 655-656.	3.4	0
279	Triacylglycerol synthesis by microsomal fractions from olive cultures. Biochemical Society Transactions, 1992, 20, 171S-171S.	3.4	0
280	Use of olive cultures to evaluate triacylglycerol synthesis. Biochemical Society Transactions, 1993, 21, 1815-181S.	3.4	0
281	Regulation of sulpholipid biosynthesis. Biochemical Society Transactions, 1994, 22, 2015-2015.	3.4	O
282	The Effects of Pesticides on Lipid Synthesis in Olive Fruits and Tissue Cultures. Biochemical Society Transactions, 1994, 22, 259S-259S.	3.4	0
283	Association of surfactant deficiency with alveolar bronchiolitis. Biochemical Society Transactions, 1997, 25, 498S-498S.	3.4	0
284	Lipids in Seville. Trends in Plant Science, 1998, 3, 369-370.	8.8	0
285	Genetic mechanisms involved in the adaptation of marine algae to heavy metal pollution. Biochemical Society Transactions, 1998, 26, S153-S153.	3.4	0
286	Inspiré par les lipides (Médaille Chevreul 2014). OCL - Oilseeds and Fats, Crops and Lipids, 2015, 22, A202.	1.4	0
287	Inspired by lipids: the Morton Lecture Award Presentation. Biochemical Society Transactions, 2017, 45, 297-302.	3.4	O
288	Mechanism of glutamate semialdehyde aminotransferase probed with substrate analogues. , 1994, , 105-109.		0