Zuzana Storchova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8318852/publications.pdf

Version: 2024-02-01

72 papers 10,298 citations

126708 33 h-index 70 g-index

90 all docs 90 docs citations

90 times ranked 20721 citing authors

#	Article	IF	CITATIONS
1	Genetic instability from a single S phase after whole-genome duplication. Nature, 2022, 604, 146-151.	13.7	54
2	Loss of USP28 and SPINT2 expression promotes cancer cell survival after whole genome doubling. Cellular Oncology (Dordrecht), 2022, 45, 103-119.	2.1	8
3	Whole-Genome Duplication Shapes the Aneuploidy Landscape of Human Cancers. Cancer Research, 2022, 82, 1736-1752.	0.4	25
4	Consequences of Chromosome Loss: Why Do Cells Need Each Chromosome Twice?. Cells, 2022, 11, 1530.	1.8	4
5	Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature, 2021, 590, 486-491.	13.7	135
6	Peroxiredoxins couple metabolism and cell division in an ultradian cycle. Nature Chemical Biology, 2021, 17, 477-484.	3.9	24
7	SUMOylation stabilizes sister kinetochore biorientation to allow timely anaphase. Journal of Cell Biology, 2021, 220, .	2.3	5
8	The ER protein Ema19 facilitates the degradation of nonimported mitochondrial precursor proteins. Molecular Biology of the Cell, 2021, 32, 664-674.	0.9	18
9	The chaperone-binding activity of the mitochondrial surface receptor Tom70 protects the cytosol against mitoprotein-induced stress. Cell Reports, 2021, 35, 108936.	2.9	47
10	Genotoxic stress in constitutive trisomies induces autophagy and the innate immune response via the cGAS-STING pathway. Communications Biology, 2021, 4, 831.	2.0	22
11	Profiling the physiological pitfalls of antiâ€hepatitis C directâ€acting agents in budding yeast. Microbial Biotechnology, 2021, 14, 2199-2213.	2.0	7
12	Consequences of mitotic failure – The penalties and the rewards. Seminars in Cell and Developmental Biology, 2021, 117, 149-158.	2.3	6
13	Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Developmental Cell, 2021, 56, 2427-2439.e4.	3.1	101
14	Systems approaches identify the consequences of monosomy in somatic human cells. Nature Communications, 2021, 12, 5576.	5.8	29
15	Processes shaping cancer genomes – From mitotic defects to chromosomal rearrangements. DNA Repair, 2021, 107, 103207.	1.3	3
16	The versatile interactome of chloroplast ribosomes revealed by affinity purification mass spectrometry. Nucleic Acids Research, 2021, 49, 400-415.	6.5	23
17	mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations. Nucleic Acids Research, 2020, 48, 605-632.	6.5	47
18	Phospho-regulation of the Shugoshin - Condensin interaction at the centromere in budding yeast. PLoS Genetics, 2020, 16, e1008569.	1.5	9

#	Article	IF	CITATIONS
19	Single-Chromosomal Gains Can Function as Metastasis Suppressors and Promoters in Colon Cancer. Developmental Cell, 2020, 52, 413-428.e6.	3.1	65
20	Altering microtubule dynamics is synergistically toxic with spindle assembly checkpoint inhibition. Life Science Alliance, 2020, 3, e201900499.	1.3	18
21	Protein aggregation mediates stoichiometry of protein complexes in aneuploid cells. Genes and Development, 2019, 33, 1031-1047.	2.7	83
22	Modelling chromosome structural and copy number changes to understand cancer genomes. Current Opinion in Genetics and Development, 2019, 54, 25-32.	1.5	11
23	Suppressing Aneuploidy-Associated Phenotypes Improves the Fitness of Trisomy 21 Cells. Cell Reports, 2019, 29, 2473-2488.e5.	2.9	40
24	The diverse consequences of aneuploidy. Nature Cell Biology, 2019, 21, 54-62.	4.6	140
25	Micronuclei-based model system reveals functional consequences of chromothripsis in human cells. ELife, 2019, 8, .	2.8	67
26	Sphingolipid Turnover Turns Over the Fate of Aneuploid Cells. Trends in Genetics, 2018, 34, 255-256.	2.9	0
27	Quantitative proteomic and phosphoproteomic comparison of human colon cancer DLD-1 cells differing in ploidy and chromosome stability. Molecular Biology of the Cell, 2018, 29, 1031-1047.	0.9	41
28	The deregulated microRNAome contributes to the cellular response to aneuploidy. BMC Genomics, 2018, 19, 197.	1.2	13
29	Evolution of aneuploidy: overcoming the original CIN. Genes and Development, 2018, 32, 1459-1460.	2.7	5
30	Single-chromosome Gains Commonly Function as Tumor Suppressors. Cancer Cell, 2017, 31, 240-255.	7.7	164
31	Cellular Prion Protein PrPC and Ecto-5′-Nucleotidase Are Markers of the Cellular Stress Response to Aneuploidy. Cancer Research, 2017, 77, 2914-2926.	0.4	7
32	Stable aneuploid tumors cells are more sensitive to TTK inhibition than chromosomally unstable cell lines. Oncotarget, 2017, 8, 38309-38325.	0.8	25
33	BCL9L and caspase-2â€"new guardians against aneuploidy. Translational Cancer Research, 2017, 6, S1139-S1142.	0.4	0
34	The genomic characteristics and cellular origin of chromothripsis. Current Opinion in Cell Biology, 2016, 40, 106-113.	2.6	45
35	Effects of aneuploidy on gene expression: implications for cancer. FEBS Journal, 2016, 283, 791-802.	2.2	75
36	Too much to differentiate: aneuploidy promotes proliferation and teratoma formation in embryonic stem cells. EMBO Journal, 2016, 35, 2265-2267.	3.5	4

#	Article	IF	Citations
37	Kinetic Analysis of Protein Stability Reveals Age-Dependent Degradation. Cell, 2016, 167, 803-815.e21.	13.5	259
38	Too much to handle $\hat{a} \in$ "how gaining chromosomes destabilizes the genome. Cell Cycle, 2016, 15, 2867-2874.	1.3	8
39	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
40	Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects. Cell Stem Cell, 2016, 18, 253-261.	5.2	106
41	The presence of extra chromosomes leads to genomic instability. Nature Communications, 2016, 7, 10754.	5.8	235
42	Aneuploidy and proteotoxic stress in cancer. Molecular and Cellular Oncology, 2015, 2, e976491.	0.3	24
43	Chromosomal instability, tolerance of mitotic errors and multidrug resistance are promoted by tetraploidization in human cells. Cell Cycle, 2015, 14, 2810-2820.	1.3	136
44	Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science, 2015, 348, 1253671.	6.0	183
45	Causes and consequences of protein folding stress in aneuploid cells. Cell Cycle, 2015, 14, 495-501.	1.3	25
46	Consequences of Aneuploidy in Cancer: Transcriptome and Beyond. Recent Results in Cancer Research, 2015, 200, 195-224.	1.8	4
47	Sgo1 Regulates Both Condensin and Ipl1/Aurora B to Promote Chromosome Biorientation. PLoS Genetics, 2014, 10, e1004411.	1.5	64
48	Unique features of the transcriptional response to model aneuploidy in human cells. BMC Genomics, 2014, 15, 139.	1.2	87
49	Dynamic karyotype, dynamic proteome: buffering the effects of aneuploidy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 473-481.	1.9	32
50	<scp>HSF</scp> 1 deficiency and impaired <scp>HSP</scp> 90â€dependent protein folding are hallmarks of aneuploid human cells. EMBO Journal, 2014, 33, 2374-2387.	3.5	101
51	Ploidy changes and genome stability in yeast. Yeast, 2014, 31, 421-430.	0.8	70
52	Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells. Chromosoma, 2013, 122, 305-318.	1.0	64
53	Myocardin related transcription factors are required for coordinated cell cycle progression. Cell Cycle, 2013, 12, 1762-1772.	1.3	11
54	Suv4-20h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes and Development, 2013, 27, 859-872.	2.7	105

#	Article	IF	CITATIONS
55	Activation of autophagy in cells with abnormal karyotype. Autophagy, 2013, 9, 246-248.	4.3	35
56	Post-translational Modifications Regulate Assembly of Early Spindle Orientation Complex in Yeast. Journal of Biological Chemistry, 2012, 287, 16238-16245.	1.6	10
57	<i>Drosophila</i> Psidin Regulates Olfactory Neuron Number and Axon Targeting through Two Distinct Molecular Mechanisms. Journal of Neuroscience, 2012, 32, 16080-16094.	1.7	15
58	Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Molecular Systems Biology, 2012, 8, 608.	3.2	379
59	The Causes and Consequences of Aneuploidy in Eukaryotic Cells. , 2012, , .		7
60	Mitotic Spindle Orients Perpendicular to the Forces Imposed by Dynamic Shear. PLoS ONE, 2011, 6, e28965.	1.1	11
61	Bub1, Sgo1, and Mps1 mediate a distinct pathway for chromosome biorientation in budding yeast. Molecular Biology of the Cell, 2011, 22, 1473-1485.	0.9	41
62	Why some tits store food and others do not: evaluation of ecological factors. Journal of Ethology, 2010, 28, 207-219.	0.4	6
63	The consequences of tetraploidy and aneuploidy. Journal of Cell Science, 2008, 121, 3859-3866.	1.2	321
64	Tetraploidy, aneuploidy and cancer. Current Opinion in Genetics and Development, 2007, 17, 157-162.	1.5	588
65	Genome-wide genetic analysis of polyploidy in yeast. Nature, 2006, 443, 541-547.	13.7	328
66	Defects Arising From Whole-Genome Duplications in Saccharomyces cerevisiae. Genetics, 2004, 167, 1109-1121.	1.2	79
67	From polyploidy to aneuploidy, genome instability and cancer. Nature Reviews Molecular Cell Biology, 2004, 5, 45-54.	16.1	721
68	Differential killing of mismatch repair-deficient and -proficient cells: towards the therapy of tumors with microsatellite instability. Cancer Research, 2003, 63, 8113-7.	0.4	7
69	Dissection of the Functions of the <i>Saccharomyces cerevisiae RAD6</i> Postreplicative Repair Group in Mutagenesis and UV Sensitivity. Genetics, 2001, 159, 953-963.	1.2	45
70	Starvation-associated mutagenesis in yeast Saccharomyces cerevisiae is affected by Ras2/cAMP signaling pathway. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1999, 431, 59-67.	0.4	7
71	The involvement of the RAD6 gene in starvation-induced reverse mutation in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1998, 258, 546-552.	2.4	15
72	Uracilless death and papillae formation inrad6-1 polyauxotrophic strains of Saccharomyces cerevisiae. Folia Microbiologica, 1997, 42, 557-561.	1.1	2