Chris J Wright

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8318466/publications.pdf

Version: 2024-02-01

		117453	205818
53	3,939	34	48
papers	citations	h-index	g-index
53	53	53	5701
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Comparison between dual-layer (superhydrophobic–hydrophobic) and single superhydrophobic layer electrospun membranes for heavy metal recovery by air-gap membrane distillation. Desalination, 2018, 439, 31-45.	4.0	40
2	Investigation of UF membranes fouling and potentials as pre-treatment step in desalination and surface water applications. Desalination, 2018, 432, 115-127.	4.0	39
3	<i>In vivo</i> comparison of jellyfish and bovine collagen sponges as prototype medical devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1524-1533.	1.6	53
4	Robust superhydrophobic electrospun membrane fabricated by combination of electrospinning and electrospraying techniques for air gap membrane distillation. Desalination, 2018, 446, 70-82.	4.0	83
5	Exploring the current state of play for cost-effective water treatment by membranes. Npj Clean Water, 2018, 1, .	3.1	20
6	Atomic force microscopy studies of bioprocess engineering surfaces – imaging, interactions and mechanical properties mediating bacterial adhesion. Biotechnology Journal, 2017, 12, 1600698.	1.8	34
7	Atomic force microscopy study of the biofouling and mechanical properties of virgin and industrially fouled reverse osmosis membranes. Desalination, 2017, 404, 313-321.	4.0	32
8	The fabrication of iron oxide nanoparticleâ€nanofiber composites by electrospinning and their applications in tissue engineering. Biotechnology Journal, 2017, 12, 1600693.	1.8	38
9	The antimicrobial effects of the alginate oligomer OligoG CF-5/20 are independent of direct bacterial cell membrane disruption. Scientific Reports, 2017, 7, 44731.	1.6	21
10	Modelling of air gap membrane distillation and its application in heavy metals removal. Desalination, 2017, 424, 27-36.	4.0	55
11	Superhydrophobic electrospun membrane for heavy metals removal by air gap membrane distillation (AGMD). Desalination, 2017, 420, 318-329.	4.0	119
12	Fabrication of antibacterial mixed matrix nanocomposite membranes using hybrid nanostructure of silver coated multi-walled carbon nanotubes. Chemical Engineering Journal, 2017, 326, 721-736.	6.6	70
13	Engineering nanocomposite membranes: Addressing current challenges and future opportunities. Desalination, 2017, 401, 1-15.	4.0	91
14	In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning. Materials Science and Engineering C, 2017, 70, 512-519.	3.8	29
15	Atomic Force Microscopy of Biofilms—Imaging, Interactions, and Mechanics. , 2016, , .		11
16	A New Class of Safe Oligosaccharide Polymer Therapy To Modify the Mucus Barrier of Chronic Respiratory Disease. Molecular Pharmaceutics, 2016, 13, 863-872.	2.3	68
17	An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Carbohydrate Polymers, 2016, 137, 191-197.	5.1	60
18	MICROSCOPY Atomic Force Microscopy., 2014,, 666-675.		4

#	Article	IF	Citations
19	A Nanoscale Characterization of the Interaction of a Novel Alginate Oligomer with the Cell Surface and Motility of $\langle i \rangle$ Pseudomonas aeruginosa $\langle i \rangle$. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 483-492.	1.4	55
20	Alginate Oligosaccharides Inhibit Fungal Cell Growth and Potentiate the Activity of Antifungals against Candida and Aspergillus spp. PLoS ONE, 2014, 9, e112518.	1.1	70
21	The effect of alginate oligosaccharides on the mechanical properties of Gram-negative biofilms. Biofouling, 2013, 29, 413-421.	0.8	79
22	Single-walled carbon nanotubes: differential genotoxic potential associated with physico-chemical properties. Nanotoxicology, 2013, 7, 144-156.	1.6	46
23	Modification of Schottky interface by the inclusion of DNA interlayer to create metal $\!\!\!/$ organic $\!\!\!\!/$ inorganic structures. , 2012, , .		2
24	Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters. Water Research, 2012, 46, 33-42.	5.3	166
25	The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials, 2012, 33, 163-170.	5.7	129
26	Dextran Coated Ultrafine Superparamagnetic Iron Oxide Nanoparticles: Compatibility with Common Fluorometric and Colorimetric Dyes. Analytical Chemistry, 2011, 83, 3778-3785.	3.2	55
27	Positively charged nanofiltration membranes: Review of current fabrication methods and introduction of a novel approach. Advances in Colloid and Interface Science, 2011, 164, 12-20.	7.0	132
28	Application of AFM from microbial cell to biofilm. Scanning, 2010, 32, 134-149.	0.7	84
29	Morphology, Ultrastructure, and Small Subunit rDNA Phylogeny of the Marine Heterotrophic Flagellate <i>Goniomonas</i> aff. <i>amphinema</i> Journal of Eukaryotic Microbiology, 2010, 57, 159-170.	0.8	15
30	Optimized sample preparation for highâ€resolution AFM characterization of fixed human cells. Journal of Microscopy, 2010, 240, 111-121.	0.8	29
31	Progesterone induces nanoâ€scale molecular modifications on endometrial epithelial cell surfaces. Biology of the Cell, 2009, 101, 481-493.	0.7	24
32	NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials, 2009, 30, 3891-3914.	5.7	998
33	Measurement of polyphenol–membrane interaction forces during the ultrafiltration of black tea liquor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 335, 148-153.	2.3	17
34	High-resolution imaging using a novel atomic force microscope and confocal laser scanning microscope hybrid instrument: essential sample preparation aspects. Histochemistry and Cell Biology, 2008, 130, 909-916.	0.8	34
35	FtsW Is a Dispensable Cell Division Protein Required for Z-Ring Stabilization during Sporulation Septation in <i>Streptomyces coelicolor</i> i>. Journal of Bacteriology, 2008, 190, 5555-5566.	1.0	47
36	Characterization of Changes to the Cell Surface during the Life Cycle of Streptomyces coelicolor: Atomic Force Microscopy of Living Cells. Journal of Bacteriology, 2007, 189, 2219-2225.	1.0	35

#	Article	IF	CITATIONS
37	Repeatedin vitrosubculturing alters spore surface properties and virulence of Metarhizium anisopliae. FEMS Microbiology Letters, 2007, 276, 60-66.	0.7	61
38	The application of atomic force microscopy force measurements to the characterisation of microbial surfaces. Surface and Interface Analysis, 2006, 38, 1419-1428.	0.8	64
39	Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal. Colloids and Surfaces B: Biointerfaces, 2006, 51, 44-53.	2.5	121
40	A study of the tensile properties of liquids in confined spaces using an atomic force microscope. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459, 2885-2908.	1.0	16
41	The measurement of Bacillus mycoides spore adhesion using atomic force microscopy, simple counting methods, and a spinning disk technique. Biotechnology and Bioengineering, 2002, 79, 170-179.	1.7	92
42	Atomic Force Microscopy Study of the Adhesion of Saccharomyces cerevisiae. Journal of Colloid and Interface Science, 2001, 237, 54-61.	5.0	148
43	Direct Quantification of Aspergillus niger Spore Adhesion in Liquid Using an Atomic Force Microscope. Journal of Colloid and Interface Science, 2000, 228, 428-433.	5.0	41
44	Direct quantification of Aspergillus niger spore adhesion to mica in air using an atomic force microscope. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173, 205-210.	2.3	37
45	Title is missing!. Biotechnology Letters, 2000, 22, 893-903.	1.1	83
46	An atomic force microscopy study of the adhesion of a silica sphere to a silica surface—effects of surface cleaning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 157, 117-125.	2.3	81
47	The effects of electrostatic interactions on the rejection of colloids by membrane poresâ€"visualisation and quantification. Chemical Engineering Science, 1999, 54, 369-375.	1.9	28
48	Ab Initio Prediction of the Performance of Membrane Separation Processes. Comprehensive Chemical Kinetics, 1999, 37, 523-541.	2.3	5
49	MICROSCOPY Atomic Force Microscopy. , 1999, , 1418-1425.		0
50	Direct Measurement of Interactions between Adsorbed Protein Layers Using an Atomic Force Microscope. Journal of Colloid and Interface Science, 1998, 197, 348-352.	5.0	86
51	Direct measurement of the force of adhesion of a single biological cell using an atomic force microscope. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 136, 231-234.	2.3	95
52	A new technique for membrane characterisation: direct measurement of the force of adhesion of a single particle using an atomic force microscope. Journal of Membrane Science, 1998, 139, 269-274.	4.1	96
53	Electrospinning of Functional Nanofibers for Regenerative Medicine: From Bench to Commercial Scale., 0, , .		1