
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8318406/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Threeâ€inâ€One C ₂ H ₂ â€Selectivityâ€Guided Adsorptive Separation across an Isoreticular Family of Cationic Squareâ€Lattice MOFs. Angewandte Chemie, 2022, 134, e202114132.	2.0	2
2	Threeâ€inâ€One C ₂ H ₂ â€Selectivityâ€Guided Adsorptive Separation across an Isoreticular Family of Cationic Square‣attice MOFs. Angewandte Chemie - International Edition, 2022, 61, .	13.8	33
3	Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOFâ€Derived Electrocatalysts. ChemElectroChem, 2022, 9, .	3.4	12
4	Dual In Situ Laser Techniques Underpin the Role of Cations in Impacting Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
5	Cover Feature: Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOFâ€Derived Electrocatalysts (ChemElectroChem 7/2022). ChemElectroChem, 2022, 9, .	3.4	0
6	Dual In Situ Laser Techniques Underpin the Role of Cations in Impacting Electrocatalysts. Angewandte Chemie, 2022, 134, .	2.0	7
7	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34, .	21.0	82
8	Water vapour induced reversible switching between a 1-D coordination polymer and a 0-D aqua complex. Chemical Communications, 2022, 58, 8218-8221.	4.1	5
9	CO ₂ Capture by Hybrid Ultramicroporous TIFSIXâ€3â€Ni under Humid Conditions Using Nonâ€Equilibrium Cycling. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
10	Porphyrinic MOF derived Single-atom electrocatalyst enables methanol oxidation. Chemical Engineering Journal, 2022, 449, 137888.	12.7	13
11	Allâ€inâ€One: Sensing, Adsorptive Removal, and Photocatalytic Degradation of Nitroâ€Explosive Contaminants by Microporous Polycarbazole Polymer. Macromolecular Rapid Communications, 2021, 42, e2000469.	3.9	13
12	Homochiral metal–organic frameworks for enantioseparation. Chemical Society Reviews, 2021, 50, 5706-5745.	38.1	86
13	Tin-Based Oxide, Alloy, and Selenide Li-Ion Battery Anodes Derived from a Bimetallic Metal–Organic Material. Journal of Physical Chemistry C, 2021, 125, 1180-1189.	3.1	6
14	Spiers Memorial Lecture: Coordination networks that switch between nonporous and porous structures: an emerging class of soft porous crystals. Faraday Discussions, 2021, 231, 9-50.	3.2	34
15	In Situ Tracking of Wettingâ€Front Transient Heat Release on a Surfaceâ€Mounted Metal–Organic Framework. Advanced Materials, 2021, 33, 2006980.	21.0	7
16	Aminoâ€Functionalised Hybrid Ultramicroporous Materials that Enable Singleâ€6tep Ethylene Purification from a Ternary Mixture. Angewandte Chemie, 2021, 133, 10997-11004.	2.0	10
17	Aminoâ€Functionalised Hybrid Ultramicroporous Materials that Enable Singleâ€Step Ethylene Purification from a Ternary Mixture. Angewandte Chemie - International Edition, 2021, 60, 10902-10909.	13.8	56
18	Metalâ€Organic Frameworks: In Situ Tracking of Wettingâ€Front Transient Heat Release on a	21.0	0

Surfaceâ€Mounted Metal–Organic Framework (Adv. Mater. 14/2021). Advanced Materials, 2021, 33, 2170109.

#	Article	IF	CITATIONS
19	Surface-Mounted Metal–Organic Frameworks: Past, Present, and Future Perspectives. Langmuir, 2021, 37, 6847-6863.	3.5	32
20	A decade of decoding. Nature Reviews Chemistry, 2021, 5, 600-601.	30.2	2
21	Advances in adsorptive separation of benzene and cyclohexane by metal-organic framework adsorbents. Coordination Chemistry Reviews, 2021, 437, 213852.	18.8	74
22	Efficient Capture of Trace Acetylene by an Ultramicroporous Metal–Organic Framework with Purine Binding Sites. Chemistry of Materials, 2021, 33, 5800-5808.	6.7	22
23	Porphyrinischer MOFâ€Film für vielfäige elektrochemische Sensorik. Angewandte Chemie, 2021, 133, 20714-20721.	2.0	5
24	Porphyrinic MOF Film for Multifaceted Electrochemical Sensing. Angewandte Chemie - International Edition, 2021, 60, 20551-20557.	13.8	105
25	Breaking the trade-off between selectivity and adsorption capacity for gas separation. CheM, 2021, 7, 3085-3098.	11.7	68
26	Hydrophobicity: a key factor en route to applications of metal–organic frameworks. Trends in Chemistry, 2021, 3, 911-925.	8.5	14
27	Pore Engineering for One-Step Ethylene Purification from a Three-Component Hydrocarbon Mixture. Journal of the American Chemical Society, 2021, 143, 1485-1492.	13.7	143
28	Post-synthetically modified metal–organic frameworks for sensing and capture of water pollutants. Dalton Transactions, 2021, 50, 17832-17850.	3.3	22
29	A superhydrophilic metal–organic framework thin film for enhancing capillary-driven boiling heat transfer. Journal of Materials Chemistry A, 2021, 9, 25480-25487.	10.3	15
30	One-step ethylene production from a four-component gas mixture by a single physisorbent. Nature Communications, 2021, 12, 6507.	12.8	64
31	Crystal engineered hybrid ultramicroporous materials for single-step ethylene purification from C ₂ –CO ₂ ternary mixture. Acta Crystallographica Section A: Foundations and Advances, 2021, 77, C126-C126.	0.1	0
32	Halogen–C ₂ H ₂ Binding in Ultramicroporous Metal–Organic Frameworks (MOFs) for Benchmark C ₂ H ₂ /CO ₂ Separation Selectivity. Chemistry - A European Journal, 2020, 26, 4923-4929.	3.3	72
33	[Cu(4-phenylpyridine) ₄ (trifluoromethanesulfonate) ₂], a Werner complex that exhibits high selectivity for <i>o</i> -xylene. Chemical Communications, 2020, 56, 1940-1943.	4.1	17
34	An overview on trace CO2 removal by advanced physisorbent materials. Journal of Environmental Management, 2020, 255, 109874.	7.8	45
35	Porphyrin based metal–organic framework films: nucleation and growth. Journal of Materials Chemistry A, 2020, 8, 25941-25950.	10.3	24
36	Crystal engineering of porous coordination networks to enable separation of C2 hydrocarbons. Chemical Communications, 2020, 56, 10419-10441.	4.1	123

#	Article	IF	CITATIONS
37	Innentitelbild: Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H ₂ by Calcium Trimesate (Angew. Chem. 37/2020). Angewandte Chemie, 2020, 132, 15898-15898.	2.0	0
38	A square lattice topology coordination network that exhibits highly selective C 2 H 2 /CO 2 separation performance. SmartMat, 2020, 1, e1008.	10.7	7
39	Crystal engineering of a rectangular sql coordination network to enable xylenes selectivity over ethylbenzene. Chemical Science, 2020, 11, 6889-6895.	7.4	26
40	Crystal Engineering of Hybrid Coordination Networks: From Form to Function. Trends in Chemistry, 2020, 2, 506-518.	8.5	55
41	Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H 2 by Calcium Trimesate. Angewandte Chemie, 2020, 132, 16322-16328.	2.0	8
42	Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H ₂ by Calcium Trimesate. Angewandte Chemie - International Edition, 2020, 59, 16188-16194.	13.8	28
43	Cleaving Carboxyls: Understanding Thermally Triggered Hierarchical Pores in the Metal–Organic Framework MIL-121. Journal of the American Chemical Society, 2019, 141, 14257-14271.	13.7	53
44	Metal-organic framework based carbon capture and purification technologies for clean environment. , 2019, , 5-61.		21
45	Stabilizing Metal–Organic Polyhedra (MOP): Issues and Strategies. Chemistry - an Asian Journal, 2019, 14, 3096-3108.	3.3	66
46	Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science, 2019, 366, 241-246.	12.6	360
47	Tuning the Gateâ€Opening Pressure in a Switching pcu Coordination Network, Xâ€pcuâ€5â€Zn, by Pillarâ€Ligand Substitution. Angewandte Chemie - International Edition, 2019, 58, 18212-18217.	13.8	55
48	Hydrophobic metal-organic frameworks: Potential toward emerging applications. APL Materials, 2019, 7, 050701.	5.1	40
49	Highly Selective, Highâ€Capacity Separation of <i>o</i> â€Xylene from C ₈ Aromatics by a Switching Adsorbent Layered Material. Angewandte Chemie - International Edition, 2019, 58, 6630-6634.	13.8	69
50	Highly Selective, High apacity Separation of o â€Xylene from C 8 Aromatics by a Switching Adsorbent Layered Material. Angewandte Chemie, 2019, 131, 6702-6706.	2.0	10
51	Tuning the Gateâ€Opening Pressure in a Switching pcu Coordination Network, Xâ€pcuâ€5â€Zn, by Pillar‣igand Substitution. Angewandte Chemie, 2019, 131, 18380-18385.	2.0	12
52	Trace CO ₂ capture by an ultramicroporous physisorbent with low water affinity. Science Advances, 2019, 5, eaax9171.	10.3	143
53	Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal–Organic Polyhedra. Angewandte Chemie, 2019, 131, 1053-1057.	2.0	8
54	Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal–Organic Polyhedra. Angewandte Chemie - International Edition, 2019, 58, 1041-1045.	13.8	45

#	Article	IF	CITATIONS
55	Crystal engineering of dichromate pillared hybrid ultramicroporous materials incorporating pyrazole-based ligands. CrystEngComm, 2018, 20, 1193-1197.	2.6	11
56	Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coordination Chemistry Reviews, 2018, 367, 82-126.	18.8	105
57	Finding the Optimal Balance between the Pore Size and Pore Chemistry in Hybrid Ultramicroporous Materials for Trace Acetylene Capture. ACS Applied Nano Materials, 2018, 1, 6000-6004.	5.0	12
58	Layered Bimetallic Metalâ€Organic Material Derived Cu ₂ SnS ₃ /SnS ₂ /C Composite for Anode Applications in Lithiumâ€lon Batteries. ChemElectroChem, 2018, 5, 3764-3770.	3.4	10
59	Coordination Network That Reversibly Switches between Two Nonporous Polymorphs and a High Surface Area Porous Phase. Journal of the American Chemical Society, 2018, 140, 15572-15576.	13.7	51
60	Selfâ€Assembled, Fluorineâ€Rich Porous Organic Polymers: A Class of Mechanically Stiff and Hydrophobic Materials. Chemistry - A European Journal, 2018, 24, 11771-11778.	3.3	8
61	Recyclable switching between nonporous and porous phases of a square lattice (sql) topology coordination network. Chemical Communications, 2018, 54, 7042-7045.	4.1	37
62	Metal–organic frameworks: functional luminescent and photonic materials for sensing applications. Chemical Society Reviews, 2017, 46, 3242-3285.	38.1	2,457
63	Polar Pore Surface Guided Selective CO ₂ Adsorption in a Prefunctionalized Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 3581-3587.	3.0	34
64	Toxic Aromatics Induced Responsive Facets for a Pore Surface Functionalized Luminescent Coordination Polymer. Inorganic Chemistry, 2017, 56, 6864-6869.	4.0	10
65	A Bifunctional Metal–Organic Framework: Striking CO ₂ â€Selective Sorption Features along with Guestâ€Induced Tuning of Luminescence. ChemPlusChem, 2016, 81, 702-707.	2.8	12
66	Harnessing Lewis acidic open metal sites of metal–organic frameworks: the foremost route to achieve highly selective benzene sorption over cyclohexane. Chemical Communications, 2016, 52, 8215-8218.	4.1	76
67	Influence of Tuned Linker Functionality on Modulation of Magnetic Properties and Relaxation Dynamics in a Family of Six Isotypic Ln ₂ (Ln = Dy and Gd) Complexes. Inorganic Chemistry, 2016, 55, 11283-11298.	4.0	83
68	An Ultrahydrophobic Fluorous Metal–Organic Framework Derived Recyclable Composite as a Promising Platform to Tackle Marine Oil Spills. Chemistry - A European Journal, 2016, 22, 10937-10943.	3.3	91
69	Frontispiece: A Bifunctional Metal-Organic Framework: Striking CO2 -Selective Sorption Features along with Guest-Induced Tuning of Luminescence. ChemPlusChem, 2016, 81, .	2.8	0
70	One dimensional coordination polymers of Cd(II) and Zn(II): Synthesis, structure, polar packing through strong inter-chain hydrogen bonding and gas adsorption studies. Polyhedron, 2016, 106, 163-170.	2.2	16
71	Two-dimensional flexible Ni(II)-based porous coordination polymer showing single-crystal to single-crystal transformation, selective gas adsorption and catalytic properties. Polyhedron, 2016, 105, 228-237.	2.2	26
72	Selective Detection of 2,4,6-Trinitrophenol (TNP) by a π-Stacked Organic Crystalline Solid in Water. Crystal Growth and Design, 2015, 15, 3493-3497.	3.0	70

#	Article	IF	CITATIONS
73	Chiral biomolecule based dodecanuclear dysprosium(<scp>iii</scp>)–copper(<scp>ii</scp>) clusters: structural analyses and magnetic properties. Inorganic Chemistry Frontiers, 2015, 2, 854-859.	6.0	9
74	Exploiting Framework Flexibility of a Metal–Organic Framework for Selective Adsorption of Styrene over Ethylbenzene. Inorganic Chemistry, 2015, 54, 4403-4408.	4.0	50
75	Exploitation of Guest Accessible Aliphatic Amine Functionality of a Metal–Organic Framework for Selective Detection of 2,4,6-Trinitrophenol (TNP) in Water. Crystal Growth and Design, 2015, 15, 4627-4634.	3.0	137
76	A π-electron deficient diaminotriazine functionalized MOF for selective sorption of benzene over cyclohexane. Chemical Communications, 2015, 51, 15386-15389.	4.1	64
77	Selective and Sensitive Aqueousâ€Phase Detection of 2,4,6â€Trinitrophenol (TNP) by an Amineâ€Functionalized Metal–Organic Framework. Chemistry - A European Journal, 2015, 21, 965-969.	3.3	297
78	Recent Progress in the Realm of Homonuclear Ln6 Single molecule magnets: Structural Overview and Synthetic Approaches. Proceedings of the Indian National Science Academy, 2015, 81, .	1.4	0
79	Slow Magnetic Relaxation in an Asymmetrically Coupled Heptanuclear Dysprosium(III)–Nickel(II) Architecture. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2014, 84, 151-156.	1.2	4
80	Guestâ€Responsive Function of a Dynamic Metal–Organic Framework with a Ï€ Lewis Acidic Pore Surface. Chemistry - A European Journal, 2014, 20, 15303-15308.	3.3	43
81	Capsule voided nanospace confinement in a π-stacked supramolecular organic solid. CrystEngComm, 2014, 16, 4691.	2.6	9
82	Gas Adsorption, Magnetism, and Single-Crystal to Single-Crystal Transformation Studies of a Three-Dimensional Mn(II) Porous Coordination Polymer. Crystal Growth and Design, 2014, 14, 5585-5592.	3.0	33
83	Structures and Magnetic Properties of Two Analogous Dy ₆ Wheels with Electron-Donation and -Withdrawal Effects. Inorganic Chemistry, 2014, 53, 7554-7560.	4.0	30
84	Framework-Flexibility Driven Selective Sorption of p-Xylene over Other Isomers by a Dynamic Metal-Organic Framework. Scientific Reports, 2014, 4, 5761.	3.3	81
85	Structural Dynamism and Controlled Chemical Blocking/Unblocking of Active Coordination Space of a Soft Porous Crystal. Inorganic Chemistry, 2013, 52, 12784-12789.	4.0	16
86	Bi-porous metal–organic framework with hydrophilic and hydrophobic channels: selective gas sorption and reversible iodine uptake studies. CrystEngComm, 2013, 15, 9465.	2.6	64
87	Highly Selective Detection of Nitro Explosives by a Luminescent Metal–Organic Framework. Angewandte Chemie - International Edition, 2013, 52, 2881-2885.	13.8	1,206
88	An asymmetrically connected hexanuclear DyIII6 cluster exhibiting slow magnetic relaxation. Inorganic Chemistry Communication, 2013, 35, 144-148.	3.9	17
89	CO2 Capture by Hybrid Ultramicroporous TIFSIXâ€3â€Ni under Humid Conditions Using Nonâ€Equilibrium Cycling. Angewandte Chemie, 0, , .	2.0	3