Katsuyoshi Nishinari

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/8317868/katsuyoshi-nishinari-publications-by-citations.pdf$

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

424 papers 14,903 citations

64 h-index

99 g-index

442 ext. papers

16,774 ext. citations

6.3 avg, IF

6.78 L-index

#	Paper	IF	Citations
424	Soy proteins: A review on composition, aggregation and emulsification. <i>Food Hydrocolloids</i> , 2014 , 39, 301-318	10.6	523
423	Gelation of gellan 🖪 review. <i>Food Hydrocolloids</i> , 2012 , 28, 373-411	10.6	431
422	Dynamic viscoelastic study on the gelation of 7 S globulin from soybeans. <i>Journal of Agricultural and Food Chemistry</i> , 1992 , 40, 941-944	5.7	336
421	Multiple steps and critical behaviors of the binding of calcium to alginate. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 2456-62	3.4	274
420	Effects of non-ionic polysaccharides on the gelatinization and retrogradation behavior of wheat starch?. <i>Food Hydrocolloids</i> , 2005 , 19, 1-13	10.6	227
419	Review of the physico-chemical characteristics and properties of konjac mannan. <i>Food Hydrocolloids</i> , 1992 , 6, 199-222	10.6	225
418	Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as food emulsifiers. 1. Effect of concentration, pH, and salts on the emulsifying properties. <i>Food Hydrocolloids</i> , 2008 , 22, 1254-1267	10.6	221
417	"Weak gel"-type rheological properties of aqueous dispersions of nonaggregated kappa-carrageenan helices. <i>Journal of Agricultural and Food Chemistry</i> , 2001 , 49, 4436-41	5.7	212
416	Effect of soluble sugars on gelatinization and retrogradation of sweet potato starch. <i>Journal of Agricultural and Food Chemistry</i> , 1991 , 39, 1406-1410	5.7	199
415	Binding behavior of calcium to polyuronates: Comparison of pectin with alginate. <i>Carbohydrate Polymers</i> , 2008 , 72, 334-341	10.3	197
414	Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. <i>Food Hydrocolloids</i> , 2006 , 20, 532-542	10.6	177
413	Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. <i>International Journal of Biological Macromolecules</i> , 2014 , 65, 155-62	7.9	174
412	Rheological and DSC study of sol-gel transition in aqueous dispersions of industrially important polymers and colloids. <i>Colloid and Polymer Science</i> , 1997 , 275, 1093-1107	2.4	139
411	Rheological and thermal studies of gel-sol transition in gellan gum aqueous solutions. <i>Carbohydrate Polymers</i> , 1996 , 30, 109-119	10.3	134
410	Tailoring of xyloglucan properties using an enzyme. <i>Food Hydrocolloids</i> , 1998 , 12, 25-28	10.6	130
409	Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM. <i>Carbohydrate Research</i> , 2006 , 341, 90-9	2.9	126
408	Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. <i>Food Hydrocolloids</i> , 2006 , 20, 923-935	10.6	124

(2000-2013)

407	Schizophyllan: A review on its structure, properties, bioactivities and recent developments. <i>Bioactive Carbohydrates and Dietary Fibre</i> , 2013 , 1, 53-71	3.4	119
406	Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. <i>Food Hydrocolloids</i> , 2007 , 21, 617-629	10.6	118
405	Gelation behavior of native and acetylated konjac glucomannan. <i>Biomacromolecules</i> , 2002 , 3, 1296-303	6.9	118
404	Food hydrocolloids control the gelatinization and retrogradation behavior of starch. 2a. Functions of guar gums with different molecular weights on the gelatinization behavior of corn starch. <i>Food Hydrocolloids</i> , 2005 , 19, 15-24	10.6	116
403	Rheological studies on mixtures of corn starch and konjac-glucomannan. <i>Carbohydrate Polymers</i> , 1998 , 35, 71-79	10.3	115
402	Hydrocolloid gels of polysaccharides and proteins. <i>Current Opinion in Colloid and Interface Science</i> , 2000 , 5, 195-201	7.6	115
401	Rheological properties of Lepidium sativum seed extract as a function of concentration, temperature and time. <i>Food Hydrocolloids</i> , 2009 , 23, 2062-2068	10.6	114
400	Microstructure of aggregated and nonaggregated kappa-carrageenan helices visualized by atomic force microscopy. <i>Biomacromolecules</i> , 2001 , 2, 1331-7	6.9	114
399	Effects of Konjac-Glucomannan on the Gelatinization and Retrogradation of Corn Starch As Determined by Rheology and Differential Scanning Calorimetry. <i>Journal of Agricultural and Food Chemistry</i> , 1996 , 44, 2970-2976	5.7	111
398	Rheological studies on the gelation process of soybean 7 S and 11 S proteins in the presence of gluconodeltalactone. <i>Journal of Agricultural and Food Chemistry</i> , 1993 , 41, 8-14	5.7	109
397	Solution properties of pullulan. <i>Macromolecules</i> , 1991 , 24, 5590-5593	5.5	108
396	A molecular description of the gelation mechanism of konjac mannan. <i>Biomacromolecules</i> , 2000 , 1, 440-	· 50 9	100
395	Egg-box model-based gelation of alginate and pectin: A review. Carbohydrate Polymers, 2020, 242, 1163	389 .3	99
394	A molecular description of the gelation mechanism of curdlan. <i>International Journal of Biological Macromolecules</i> , 2002 , 30, 7-16	7.9	99
393	Effect of degree of acetylation on gelation of konjac glucomannan. <i>Biomacromolecules</i> , 2004 , 5, 175-85	6.9	94
392	Interaction in polysaccharide solutions and gels. <i>Current Opinion in Colloid and Interface Science</i> , 2003 , 8, 396-400	7.6	93
391	Influence of tamarind seed xyloglucan on rheological properties and thermal stability of tapioca starch. <i>Journal of Food Engineering</i> , 2006 , 77, 41-50	6	90
390	Effects of concentration dependence of retrogradation behaviour of dispersions for native and chemically modified potato starch. <i>Food Hydrocolloids</i> , 2000 , 14, 395-401	10.6	87

389	Rheology and functional properties of starches isolated from five improved rice varieties from West Africa. <i>Food Hydrocolloids</i> , 2011 , 25, 1785-1792	10.6	86
388	Interaction between poly(ethylene glycol) and water as studied by differential scanning calorimetry. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2001 , 39, 496-506	2.6	85
387	Effects of xyloglucan on the gelatinization and retrogradation of corn starch as studied by rheology and differential scanning calorimetry. <i>Food Hydrocolloids</i> , 1999 , 13, 101-111	10.6	85
386	Differential scanning calorimetry, rheology, x-ray, and NMR of very concentrated agarose gels. <i>Macromolecules</i> , 1989 , 22, 1196-1201	5.5	85
385	Rheological properties of sodium alginate in an aqueous system during gelation in relation to supermolecular structures and Ca2+ binding. <i>Food Hydrocolloids</i> , 2009 , 23, 1746-1755	10.6	84
384	Dynamic viscoelastic study on the gelation of konjac glucomannan with different molecular weights. <i>Food Hydrocolloids</i> , 1999 , 13, 227-233	10.6	82
383	Effects of some anionic polysaccharides on the gelatinization and retrogradation behaviors of wheat starch: Soybean-soluble polysaccharide and gum arabic. <i>Food Hydrocolloids</i> , 2008 , 22, 1528-1540	10.6	81
382	Effect of monovalent and divalent cations on the rheological properties of gellan gels. <i>Food Hydrocolloids</i> , 1991 , 4, 495-507	10.6	80
381	Parameters of Texture Profile Analysis. Food Science and Technology Research, 2013, 19, 519-521	0.8	79
380	Gel-sol transition of methylcellulose. <i>Macromolecular Chemistry and Physics</i> , 1997 , 198, 1217-1226	2.6	78
379	A mixed system composed of different molecular weights konjac glucomannan and kappa carrageenan: large deformation and dynamic viscoelastic study. <i>Food Hydrocolloids</i> , 1993 , 7, 213-226	10.6	78
378	Molecular structures of gellan gum imaged with atomic force microscopy in relation to the rheological behavior in aqueous systems. 1. Gellan gum with various acyl contents in the presence and absence of potassium. <i>Food Hydrocolloids</i> , 2008 , 22, 1148-1159	10.6	77
377	Swallowing profiles of food polysaccharide gels in relation to bolus rheology. <i>Food Hydrocolloids</i> , 2011 , 25, 1016-1024	10.6	76
376	Recent advances in the understanding of heat set gelling polysaccharides. <i>Trends in Food Science and Technology</i> , 2004 , 15, 305-312	15.3	76
375	Food hydrocolloids control the gelatinization and retrogradation behavior of starch. 2b. Functions of guar gums with different molecular weights on the retrogradation behavior of corn starch. <i>Food Hydrocolloids</i> , 2005 , 19, 25-36	10.6	75
374	Investigation of the gelation mechanism in .kappacarrageenan/konjac mannan mixtures using differential scanning calorimetry and electron spin resonance spectroscopy. <i>Macromolecules</i> , 1993 , 26, 5441-5446	5.5	74
373	Physicochemical aspects of hydrocolloid extract from the seeds of Lepidium sativum. <i>International Journal of Food Science and Technology</i> , 2011 , 46, 1066-1072	3.8	73
372	Synergistic interaction of xanthan gum with glucomannans and galactomannans. <i>Food Hydrocolloids</i> , 1991 , 4, 489-493	10.6	72

371	RHEOLOGY, FOOD TEXTURE AND MASTICATION. Journal of Texture Studies, 2004, 35, 113-124	3.6	70	
370	Effect of Heating and Cooling on the Gelation Kinetics of 7S Globulin from Soybeans. <i>Journal of Agricultural and Food Chemistry</i> , 1994 , 42, 1415-1419	5.7	69	
369	.kappaCarrageenan gels: effect of sucrose, glucose, urea, and guanidine hydrochloride on the rheological and thermal properties. <i>Journal of Agricultural and Food Chemistry</i> , 1990 , 38, 1188-1193	5.7	68	
368	Structural, thermal and viscoelastic properties of potato starches. <i>Food Hydrocolloids</i> , 2008 , 22, 979-988	310.6	67	
367	Intermolecular forces in bovine serum albumin solutions exhibiting solidlike mechanical behaviors. <i>Biomacromolecules</i> , 2000 , 1, 757-63	6.9	67	
366	Gel-sol transition in gellan gum solutions. I. Rheological studies on the effects of salts. <i>Food Hydrocolloids</i> , 1994 , 8, 505-527	10.6	67	
365	Rheological study of gum arabic solutions: Interpretation based on molecular self-association. <i>Food Hydrocolloids</i> , 2009 , 23, 2394-2402	10.6	66	
364	Interaction in Xanthan-Glucomannan Mixtures and the Influence of Electrolyte. <i>Macromolecules</i> , 1994 , 27, 4204-4211	5.5	66	
363	Effect of alkali metal ions on the viscoelasticity of concentrated kappa-carrageenan and agarose gels. <i>Rheologica Acta</i> , 1982 , 21, 318-324	2.3	65	
362	Compression Test of Food Gels on Artificial Tongue and Its Comparison with Human Test. <i>Journal of Texture Studies</i> , 2013 , 44, 104-114	3.6	64	
361	Fine Structure, Thermal and Viscoelastic Properties of Starches Separated from Indica Rice Cultivars. <i>Starch/Staerke</i> , 2007 , 59, 10-20	2.3	64	
360	Agarose gels: effect of sucrose, glucose, urea, and guanidine hydrochloride on the rheological and thermal properties. <i>Journal of Agricultural and Food Chemistry</i> , 1990 , 38, 1181-1187	5.7	63	
359	Effects of pH, Potassium Chloride, and Sodium Chloride on the Thermal and Rheological Properties of Gellan Gum Gels. <i>Journal of Agricultural and Food Chemistry</i> , 1995 , 43, 1685-1689	5.7	62	
358	Texture design for products using food hydrocolloids. <i>Food Hydrocolloids</i> , 2012 , 26, 412-420	10.6	61	
357	Rheological properties of agarose gels with different molecular weights. <i>Rheologica Acta</i> , 1983 , 22, 580	- <u>5</u> .8 ₃ 7	61	
356	Effects of adding acids before and after gelatinization on the viscoelasticity of cornstarch pastes. <i>Food Hydrocolloids</i> , 2005 , 19, 909-914	10.6	60	
355	Edible Pickering emulsion stabilized by protein fibrils. Part 1: Effects of pH and fibrils concentration. <i>LWT - Food Science and Technology</i> , 2017 , 76, 1-8	5.4	59	
354	Atomic force microscopy studies on cation-induced network formation of gellan. <i>Food Hydrocolloids</i> , 2004 , 18, 727-735	10.6	58	

353	Dynamic viscoelastic properties of glycinin and Econglycinin gels from soybeans. <i>Biopolymers</i> , 1994 , 34, 1303-1309	2.2	58
352	The Effect of Sucrose on the Thermo-Reversible Gel-Sol Transition in Agarose and Gelatin <i>Polymer Journal</i> , 1992 , 24, 871-877	2.7	58
351	Human oral processing and texture profile analysis parameters: Bridging the gap between the sensory evaluation and the instrumental measurements. <i>Journal of Texture Studies</i> , 2019 , 50, 369-380	3.6	57
350	Rheology and structure of mixed kappa-carrageenan/iota-carrageenan gels. <i>Food Hydrocolloids</i> , 2014 , 39, 272-279	10.6	57
349	Thermoreversible konjac glucomannan gel crosslinked by borax. Carbohydrate Polymers, 2008, 72, 315-	325 .3	57
348	Synergistic gel formation of xyloglucan/gellan mixtures as sudied by rheology, DSC, and circular dichroism. <i>Biomacromolecules</i> , 2003 , 4, 1654-60	6.9	57
347	Influence of xyloglucan on gelatinization and retrogradation of tapioca starch. <i>Food Hydrocolloids</i> , 2005 , 19, 1054-1063	10.6	57
346	Thermal aggregation of methylcellulose with different molecular weights. <i>Food Hydrocolloids</i> , 2007 , 21, 46-58	10.6	55
345	Rheological and DSC studies of gelatinization of chemically modified starch heated at various temperatures. <i>Carbohydrate Polymers</i> , 2000 , 43, 241-247	10.3	55
344	The rheological study of the interaction between alkali metal ions and kappa-carrageenan gels. <i>Colloid and Polymer Science</i> , 1982 , 260, 971-975	2.4	55
343	Swallowing profiles of food polysaccharide solutions with different flow behaviors. <i>Food Hydrocolloids</i> , 2011 , 25, 1165-1173	10.6	53
342	Texture and Rheology in Food and Health. Food Science and Technology Research, 2009, 15, 99-106	0.8	53
341	Cellulose Derivatives Effects on Gelatinization and Retrogradation of Sweet Potato Starch. <i>Journal of Food Science</i> , 1992 , 57, 128-131	3.4	53
340	EFFECT OF ALKALI METAL IONS ON THE RHEOLOGICAL PROPERTIES OF ECARRAGEENAN AND AGAROSE GELS. <i>Journal of Texture Studies</i> , 1981 , 12, 427-445	3.6	52
339	Physical Gels from Biological and Synthetic Polymers 2013 ,		51
338	Microencapsulation of Lactobacillus acidophilus CGMCC1.2686 via emulsification/internal gelation of alginate using Ca-EDTA and CaCO3 as calcium sources. <i>Food Hydrocolloids</i> , 2014 , 39, 295-300	10.6	50
337	Hydrocolloid-food component interactions. <i>Food Hydrocolloids</i> , 2017 , 68, 149-156	10.6	50
336	ELECTROMYOGRAPHY DURING ORAL PROCESSING IN RELATION TO MECHANICAL AND SENSORY PROPERTIES OF SOFT GELS. <i>Journal of Texture Studies</i> , 2011 , 42, 254-267	3.6	50

335	Non-Newtonian flow behaviour of gellan gum aqueous solutions. <i>Colloid and Polymer Science</i> , 1999 , 277, 727-734	2.4	50	
334	Single-phase mixed gels of xyloglucan and gellan. <i>Food Hydrocolloids</i> , 2004 , 18, 669-675	10.6	49	
333	Effect of deacetylation rate on gelation kinetics of konjac glucomannan. <i>Colloids and Surfaces B: Biointerfaces</i> , 2004 , 38, 241-9	6	49	
332	Solution properties of gellan gum: change in chain stiffness between single- and double-stranded chains. <i>Biomacromolecules</i> , 2004 , 5, 516-23	6.9	49	
331	Effects of sugars and polyols on the gel-sol transition of kappa-carrageenan gels. <i>Thermochimica Acta</i> , 1992 , 206, 149-162	2.9	49	
330	Thermal and rheological properties of poly(vinyl alcohol) hydrogels prepared by repeated cycles of freezing and thawing. <i>Die Makromolekulare Chemie</i> , 1988 , 189, 871-880		49	
329	Perception and measurement of food texture: Solid foods. <i>Journal of Texture Studies</i> , 2018 , 49, 160-201	3.6	48	
328	DSC and rheological studies of the effects of sucrose on the gelatinization and retrogradation of acorn starch. <i>Thermochimica Acta</i> , 1998 , 322, 39-46	2.9	48	
327	Characterization of eating difficulty by sensory evaluation of hydrocolloid gels. <i>Food Hydrocolloids</i> , 2014 , 38, 95-103	10.6	47	
326	Rheological and DSC studies on the interaction between gellan gum and konjac glucomannan. <i>Carbohydrate Polymers</i> , 1996 , 30, 193-207	10.3	47	
325	Rheological properties of agarose-gelatin gels. <i>Rheologica Acta</i> , 1980 , 19, 220-225	2.3	47	
324	Controllable hydrophilicity-hydrophobicity and related properties of konjac glucomannan and ethyl cellulose composite films. <i>Food Hydrocolloids</i> , 2018 , 79, 301-309	10.6	46	
323	Effects of molar mass on the coil to helix transition of sodium-type gellan gums in aqueous solutions. <i>Food Hydrocolloids</i> , 2006 , 20, 378-385	10.6	46	
322	Rheological and DSC changes in poly(vinyl alcohol) gels induced by immersion in water. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1985 , 23, 1803-1811		46	
321	Physicochemical characteristics of polysaccharide conjugates prepared from fresh tea leaves and their improving impaired glucose tolerance. <i>Carbohydrate Polymers</i> , 2014 , 112, 77-84	10.3	45	
320	DSC and rheological studies on aqueous dispersions of curdlan. <i>Thermochimica Acta</i> , 1997 , 306, 109-114	2.9	45	
319	Effects of salts on the gel-sol transition of gellan gum by differential scanning calorimetry and thermal scanning rheology. <i>Thermochimica Acta</i> , 1995 , 267, 269-287	2.9	45	
318	A mixed system composed of different molecular weights konjac glucomannan and Ecarrageenan. II. Molecular weight dependence of viscoelasticity and thermal properties. Food Hydrocolloids, 1996 , 10, 229-238	10.6	45	

317	Structure and Viscoelastic Properties of Starches Separated from Different Legumes. <i>Starch/Staerke</i> , 2008 , 60, 349-357	2.3	44
316	A New Apparatus for Rapid and Easy Measurement of Dynamic Viscoelasticity for Gel-like Foods. Journal of the Japanese Society for Food Science and Technology, 1980, 27, 227-233		44
315	Role of fluid cohesiveness in safe swallowing. <i>Npj Science of Food</i> , 2019 , 3, 5	6.3	43
314	GelBol transition in gellan gum solutions. II. DSC studies on the effects of salts. <i>Food Hydrocolloids</i> , 1994 , 8, 529-542	10.6	43
313	Effects of sugars and polyols on the gel-sol transition of agarose by differential scanning calorimetry. <i>Thermochimica Acta</i> , 1992 , 206, 163-173	2.9	43
312	Rheology and synergy of Etarrageenan/locust bean gum/konjac glucomannan gels. <i>Carbohydrate Polymers</i> , 2013 , 98, 754-60	10.3	42
311	Rheological properties of gum arabic solution: From Newtonianism to thixotropy. <i>Food Hydrocolloids</i> , 2011 , 25, 293-298	10.6	42
310	Gelation of xyloglucan by addition of epigallocatechin gallate as studied by rheology and differential scanning calorimetry. <i>Biomacromolecules</i> , 2004 , 5, 1206-13	6.9	42
309	Effects of citric acid on the viscoelasticity of cornstarch pastes. <i>Journal of Agricultural and Food Chemistry</i> , 2004 , 52, 2929-33	5.7	41
308	Rheological study on the effect of the A5 subunit on the gelation characteristics of soybean proteins <i>Agricultural and Biological Chemistry</i> , 1991 , 55, 351-355		41
307	Rheology of highly elastic iota-carrageenan/kappa-carrageenan/xanthan/konjac glucomannan gels. <i>Food Hydrocolloids</i> , 2015 , 44, 136-144	10.6	40
306	Characterization and emulsifying properties of Elactoglobulin-gum Acacia Seyal conjugates prepared via the Maillard reaction. <i>Food Chemistry</i> , 2017 , 214, 614-621	8.5	40
305	Characterization of the conformation and comparison of shear and extensional properties of curdlan in DMSO. <i>Food Hydrocolloids</i> , 2009 , 23, 1570-1578	10.6	40
304	Asymmetrical-flow field-flow fractionation with on-line multiangle light scattering detection. 1. Application to wormlike chain analysis of weakly stiff polymer chains. <i>Biomacromolecules</i> , 2003 , 4, 404-9	6.9	40
303	Effects of Sodium Chloride and Calcium Chloride on the Interaction between Gellan Gum and Konjac Glucomannan. <i>Journal of Agricultural and Food Chemistry</i> , 1996 , 44, 2486-2495	5.7	40
302	Ions-induced gelation of alginate: Mechanisms and applications. <i>International Journal of Biological Macromolecules</i> , 2021 , 177, 578-588	7.9	40
301	Emulsification properties of sugar beet pectin after modification with horseradish peroxidase. <i>Food Hydrocolloids</i> , 2015 , 43, 107-113	10.6	39
300	Probiotic encapsulation in water-in-water emulsion via heteroprotein complex coacervation of type-A gelatin/sodium caseinate. <i>Food Hydrocolloids</i> , 2020 , 105, 105790	10.6	39

299	Classification of Japanese Texture Terms. <i>Journal of Texture Studies</i> , 2013 , 44, 140-159	3.6	39
298	Gelation behaviors of schizophyllan-sorbitol aqueous solutions. <i>Biopolymers</i> , 2004 , 73, 44-60	2.2	39
297	Junction Multiplicity in Thermoreversible Gelation. <i>Macromolecules</i> , 1996 , 29, 3625-3628	5.5	39
296	RHEOLOGICAL PROPERTIES OF AQUEOUS AGAROSE-GELATIN GELS. <i>Journal of Texture Studies</i> , 1980 , 11, 257-270	3.6	38
295	Gum Arabic-stabilized conjugated linoleic acid emulsions: Emulsion properties in relation to interfacial adsorption behaviors. <i>Food Hydrocolloids</i> , 2015 , 48, 110-116	10.6	37
294	COMPARATIVE STUDY OF TEXTURE TERMS: ENGLISH, FRENCH, JAPANESE AND CHINESE. <i>Journal of Texture Studies</i> , 2008 , 39, 530-568	3.6	37
293	Thermal studies on the gelatinisation and retrogradation of heatthoisture treated starch. <i>Carbohydrate Polymers</i> , 2000 , 41, 97-100	10.3	37
292	Rheological properties and conformational states of Etonglycinin gels at acidic pH. <i>Biopolymers</i> , 1994 , 34, 293-298	2.2	37
291	Effect of alkali pretreatment on the rheological properties of concentrated agar-agar gels. <i>Carbohydrate Polymers</i> , 1983 , 3, 39-52	10.3	37
	Large deformation of hydrogels of poly(vinyl alcohol), agarose and kappa-carrageenan. <i>Die</i>		
290	Makromolekulare Chemie, 1985 , 186, 1081-1086		37
290 289		6	36
	Makromolekulare Chemie, 1985, 186, 1081-1086 Thermal and rheological properties of tapioca starch gels with and without xanthan gum under cold	6.9	
289	Makromolekulare Chemie, 1985, 186, 1081-1086 Thermal and rheological properties of tapioca starch gels with and without xanthan gum under cold storage. Journal of Food Engineering, 2013, 117, 333-341 Synergistic interaction of xyloglucan and xanthan investigated by rheology, differential scanning		36
289	Makromolekulare Chemie, 1985, 186, 1081-1086 Thermal and rheological properties of tapioca starch gels with and without xanthan gum under cold storage. Journal of Food Engineering, 2013, 117, 333-341 Synergistic interaction of xyloglucan and xanthan investigated by rheology, differential scanning calorimetry, and NMR. Biomacromolecules, 2006, 7, 1223-30 Hydrogen bonding enhances the electrostatic complex coacervation between Ecarrageenan and	6.9	36 36
289 288 287	Makromolekulare Chemie, 1985, 186, 1081-1086 Thermal and rheological properties of tapioca starch gels with and without xanthan gum under cold storage. Journal of Food Engineering, 2013, 117, 333-341 Synergistic interaction of xyloglucan and xanthan investigated by rheology, differential scanning calorimetry, and NMR. Biomacromolecules, 2006, 7, 1223-30 Hydrogen bonding enhances the electrostatic complex coacervation between Etarrageenan and gelatin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 604-610 Viscoelastic and fragmentation characters of model bolus from polysaccharide gels after	6.9 5.1	363635
289 288 287 286	Thermal and rheological properties of tapioca starch gels with and without xanthan gum under cold storage. <i>Journal of Food Engineering</i> , 2013 , 117, 333-341 Synergistic interaction of xyloglucan and xanthan investigated by rheology, differential scanning calorimetry, and NMR. <i>Biomacromolecules</i> , 2006 , 7, 1223-30 Hydrogen bonding enhances the electrostatic complex coacervation between Etarrageenan and gelatin. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2015 , 482, 604-610 Viscoelastic and fragmentation characters of model bolus from polysaccharide gels after instrumental mastication. <i>Food Hydrocolloids</i> , 2011 , 25, 1210-1218 Structural changes during heat-induced gelation of globular protein dispersions. <i>Biopolymers</i> , 2001 ,	6.9 5.1 10.6	36363535
289 288 287 286 285	Thermal and rheological properties of tapioca starch gels with and without xanthan gum under cold storage. Journal of Food Engineering, 2013, 117, 333-341 Synergistic interaction of xyloglucan and xanthan investigated by rheology, differential scanning calorimetry, and NMR. Biomacromolecules, 2006, 7, 1223-30 Hydrogen bonding enhances the electrostatic complex coacervation between Etarrageenan and gelatin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 604-610 Viscoelastic and fragmentation characters of model bolus from polysaccharide gels after instrumental mastication. Food Hydrocolloids, 2011, 25, 1210-1218 Structural changes during heat-induced gelation of globular protein dispersions. Biopolymers, 2001, 59, 87-102 Rheological study on gelation of soybean 11S protein by glucono-deltalactone. Journal of	6.9 5.1 10.6	3636353535

281	Changes in physiochemical properties and stability of peanut oil body emulsions by applying gum arabic. <i>LWT - Food Science and Technology</i> , 2016 , 68, 432-438	5.4	34
280	The influence of agar gel texture on sucrose release. <i>Food Hydrocolloids</i> , 2014 , 36, 196-203	10.6	34
279	Effects of the lyotropic series salts on the gelation of konjac glucomannan in aqueous solutions. <i>Carbohydrate Polymers</i> , 2008 , 74, 68-78	10.3	34
278	Rheological study on the rennet-induced gelation of casein micelles with different sizes. <i>Polymer Gels and Networks</i> , 1994 , 2, 105-118		34
277	Effect of the degree of saponification on the rheological and thermal properties of poly(vinyl alcohol) gels. <i>Die Makromolekulare Chemie</i> , 1989 , 190, 155-163		33
276	Rheology, DSC and Volume or Weight Change Induced by Immersion in Solvents for Agarose and Kappa-Carrageenan Gels. <i>Polymer Journal</i> , 1986 , 18, 1017-1025	2.7	33
275	Viscoelasticity and phase separation of aqueous Na-type gellan solution. <i>Biomacromolecules</i> , 2010 , 11, 187-91	6.9	32
274	Functions of fenugreek gum with various molecular weights on the gelatinization and retrogradation behaviors of corn starch Characterizations of starch and investigations of corn starch/fenugreek gum composite system at a relatively low starch concentration; 5w/v%. Food	10.6	32
273	Rheological characterization of schizophyllan aqueous solutions after denaturation-renaturation treatment. <i>Biopolymers</i> , 2004 , 74, 302-15	2.2	32
272	Dynamic viscoelasticity and anomalous thermal behaviour of concentrated agarose gels. <i>Die Makromolekulare Chemie</i> , 1987 , 188, 1177-1186		32
271	Effects of polyhydric alcohols on thermal and rheological properties of polysaccharide gels <i>Agricultural and Biological Chemistry</i> , 1987 , 51, 3231-3238		31
270	Mapping the Complex Phase Behaviors of Aqueous Mixtures of ECarrageenan and Type B Gelatin. Journal of Physical Chemistry B, 2015 , 119, 9982-92	3.4	30
269	Effect of heatingBooling on rheological properties of tapioca starch paste with and without xanthan gum. <i>Food Hydrocolloids</i> , 2013 , 31, 183-194	10.6	30
268	Changes in the viscoelasticity of maize starch pastes by adding sucrose at different stages. <i>Food Hydrocolloids</i> , 2005 , 19, 777-784	10.6	30
267	Effect of the Introduced Charge on the Thermal Behavior of N-Isopropylacrylamide Gels in Water and NaCl Solutions. <i>Langmuir</i> , 2000 , 16, 3195-3199	4	30
266	Rheological and thermal properties of milk gels formed with Ecarrageenan. I. Sodium caseinate. <i>Food Hydrocolloids</i> , 1999 , 13, 525-533	10.6	30
265	Effect of sodium alginate on the stability of natural soybean oil body emulsions <i>RSC Advances</i> , 2018 , 8, 4731-4741	3.7	29
264	Gelling characteristics of curdlan aqueous dispersions in the presence of salts. <i>Food Hydrocolloids</i> , 2007 , 21, 59-65	10.6	29

Characterization and properties of gellan-Ecarrageenan mixed gels. Food Hydrocolloids, 1996, 10, 277-2830.6 29 263 Effects of glucose, mannose and konjac glucomannan on the gelBol transition in gellan gum 262 28 aqueous solutions by rheology and DSC. Polymer Gels and Networks, 1998, 6, 273-290 Protein/polysaccharide cogel formation based on gelatin and chemically modified schizophyllan. 261 6.9 28 Biomacromolecules, 2005, 6, 3202-8 Rheology of schizophyllan solutions in isotropic and anisotropic phase regions. Journal of Rheology, 260 28 4.1 **2004**, 48, 1147-1166 Effects of the Degree of Saponification and Concentration on the Thermal and Rheological 28 259 2.7 Properties of Poly(vinyl alcohol)-Dimethyl Sulfoxide-Water Gels. Polymer Journal, 1989, 21, 567-575 Effect of zein-based microencapsules on the release and oxidation of loaded limonene. Food 258 28 10.6 Hydrocolloids, 2018, 84, 330-336 Instrumental Uniaxial Compression Test of Gellan Gels of Various Mechanical Properties Using Artificial Tongue and Its Comparison with Human Oral Strategy for the First Size Reduction. Journal 3.6 27 257 of Texture Studies, 2014, 45, 354-366 Effect of shear thinning on aspiration I oward making solutions for judging the risk of aspiration. 256 10.6 27 Food Hydrocolloids, **2011**, 25, 1737-1743 Molecular structures of gellan gum imaged with atomic force microscopy in relation to the rheological behavior in aqueous systems in the presence or absence of various cations. Journal of 255 5.7 27 Agricultural and Food Chemistry, 2008, 56, 8609-18 Effects of Potassium Chloride and Sodium Chloride on the Thermal Properties of Gellan Gum Gels. 2.1 254 27 Bioscience, Biotechnology and Biochemistry, 1992, 56, 595-9 Collection of Japanese Texture Terms (Studies on Japanese texture terms Part 1). Journal of the 0.2 26 253 Japanese Society for Food Science and Technology, 2005, 52, 337-346 Effects of the addition of hyaluronate segments with different chain lengths on the viscoelasticity 26 of hyaluronic acid solutions **1996**, 38, 583-591 The Food Colloid Principle in the Design of Elderly Food. Journal of Texture Studies, 2016, 47, 284-312 3.6 26 251 Application of Microrheology in Food Science. Annual Review of Food Science and Technology, 2017, 250 14.7 25 8, 493-521 Stability, microstructure and rheological behavior of konjac glucomannan-zein mixed systems. 249 10.3 25 Carbohydrate Polymers, **2018**, 188, 260-267 NUMERICAL SIMULATION OF THE SWALLOWING OF LIQUID BOLUS. Journal of Texture Studies, 248 3.6 25 **2011**, 42, 203-211 Molecular structures of gellan gum imaged with atomic force microscopy (AFM) in relation to the rheological behavior in aqueous systems in the presence of sodium chloride. Food Hydrocolloids, 10.6 247 25 2009, 23, 548-554 Dynamic Viscoelasticity of Iota Carrageenan Gelling System near Sol-Gel Transition. Nihon Reoroji 0.8 246 25 Gakkaishi, 1997, 25, 135-142

245	Mechanical characterization of network formation during heat-induced gelation of whey protein dispersions. <i>Biopolymers</i> , 2000 , 56, 109-19	2.2	25
244	Solid-like mechanical behaviors of ovalbumin aqueous solutions. <i>International Journal of Biological Macromolecules</i> , 2001 , 28, 315-20	7.9	25
243	All-Natural Food-Grade Hydrophilic-Hydrophobic Core-Shell Microparticles: Facile Fabrication Based on Gel-Network-Restricted Antisolvent Method. <i>ACS Applied Materials & Description of Compared Materials & Desc</i>	5 ⁹ 1 ⁵ 194	16 ²³
242	Specific binding of trivalent metal ions to Earrageenan. <i>International Journal of Biological Macromolecules</i> , 2018 , 109, 350-356	7.9	23
241	Whey protein isolate/gum arabic intramolecular soluble complexes improving the physical and oxidative stabilities of conjugated linoleic acid emulsions. <i>RSC Advances</i> , 2016 , 6, 14635-14642	3.7	23
240	Sucrose release from polysaccharide gels. <i>Food and Function</i> , 2016 , 7, 2130-46	6.1	23
239	Unassociated Molecular Chains in Physically Crosslinked Gellan Gels. <i>Polymer Journal</i> , 2007 , 39, 397-403	2.7	23
238	Voltammetric characterization on the hydrophobic interaction in polysaccharide hydrogels. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 1590-6	3.4	23
237	Thermal measurements of curdlan in aqueous suspension during gelation. <i>Food Hydrocolloids</i> , 2000 , 14, 121-124	10.6	23
236	Protein/polysaccharide intramolecular electrostatic complex as superior food-grade foaming agent. <i>Food Hydrocolloids</i> , 2020 , 101, 105474	10.6	23
235	New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. <i>Advances in Colloid and Interface Science</i> , 2020 , 285, 102278	14.3	23
234	Understanding the multi-scale structure and digestion rate of water chestnut starch. <i>Food Hydrocolloids</i> , 2019 , 91, 311-318	10.6	23
233	The influence of non-ionic surfactant on lipid digestion of gum Arabic stabilized oil-in-water emulsion. <i>Food Hydrocolloids</i> , 2018 , 74, 78-86	10.6	23
232	A gel network constituted by rigid schizophyllan chains and nonpermanent cross-links. <i>Biomacromolecules</i> , 2004 , 5, 126-36	6.9	22
231	DSC study on properties of water in concentrated agarose gels. <i>Food Hydrocolloids</i> , 1988 , 2, 427-438	10.6	22
230	Thermal and Rheological Properties of Agarose-Dimethyl Sulfoxide-Water Gels. <i>Polymer Journal</i> , 1988 , 20, 1125-1133	2.7	22
229	Longitudinal Vibrations of High-Elastic Gels as a Method for Determining Viscoelastic Constants. Japanese Journal of Applied Physics, 1976 , 15, 1263-1270	1.4	22
228	Relation between structure and rheological/thermal properties of agar. A mini-review on the effect of alkali treatment and the role of agaropectin. <i>Food Structure</i> , 2017 , 13, 24-34	4.3	21

227	Effects of polyols and sugars on the structure of water in concentrated gelatin gels as studied by low temperature differential scanning calorimetry. <i>Colloid and Polymer Science</i> , 1997 , 275, 1078-1082	2.4	21
226	Functions of fenugreek gum with various molecular weights on the gelatinization and retrogradation behaviors of corn starch(1): Characterizations of fenugreek gum and investigations of corn starch/fenugreek gum composite system at a relatively high starch concentration; 15 w/v%.	10.6	21
225	Functions of iota-carrageenan on the gelatinization and retrogradation behaviors of corn starch in the presence or absence of various salts. <i>Food Hydrocolloids</i> , 2008 , 22, 1273-1282	10.6	21
224	Conformation of curdlan as observed by tapping mode atomic force microscopy. <i>Colloid and Polymer Science</i> , 2006 , 284, 1371-1377	2.4	21
223	EFFECTS OF GELLAN GUM, CITRIC ACID AND SWEETENER ON THE TEXTURE OF LEMON JELLY. Journal of Texture Studies, 1999 , 30, 29-41	3.6	21
222	Study on the heat-induced conformational changes of Etonglycinin by FTIR and CD analysis. <i>Food Hydrocolloids</i> , 1995 , 9, 83-89	10.6	21
221	Effects of pH and DMSO content on the thermal and rheological properties of high methoxyl pectin-water gels. <i>Carbohydrate Polymers</i> , 1993 , 20, 175-181	10.3	21
220	Protection mechanism of alginate microcapsules with different mechanical strength for Lactobacillus plantarum ST-III. <i>Food Hydrocolloids</i> , 2017 , 66, 396-402	10.6	20
219	Calcium binding and calcium-induced gelation of sodium alginate modified by low molecular-weight polyuronate. <i>Food Hydrocolloids</i> , 2016 , 55, 65-76	10.6	20
218	Model study for large deformation of physical polymeric gels. <i>Journal of Chemical Physics</i> , 2008 , 128, 134903	3.9	20
217	Thermally induced coil-to-helix transition of sodium gellan gum with different molar masses in aqueous salt solutions. <i>Biopolymers</i> , 2005 , 79, 207-17	2.2	20
216	Viscoelastic, dielectric, and piezoelectric behavior of solid amylose. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1980 , 18, 1609-1619		20
215	Mechanisms of oligoguluronate modulating the calcium-induced gelation of alginate. <i>Polymer</i> , 2015 , 74, 166-175	3.9	19
214	Failure in a soft gel: Delayed failure and the dynamic yield stress. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2013 , 196, 1-7	2.7	19
213	Interaction of gum arabic with fatty acid studied using electron paramagnetic resonance. <i>Biomacromolecules</i> , 2010 , 11, 1398-405	6.9	19
212	Single Molecules and Networks of Xanthan Gum Probed by Atomic Force Microscopy. <i>Food Science and Technology Research</i> , 2012 , 18, 741-745	0.8	19
211	Some Thoughts on The Definition of a Gel 2009 , 87-94		19
210	Rheological and thermal properties of agarose and kappa-carrageenan gels containing urea, guanidine hydrochloride or formamide. <i>Food Hydrocolloids</i> , 1986 , 1, 25-36	10.6	19

209	Preparation and emulsifying properties of trace elements fortified gum arabic. <i>Food Hydrocolloids</i> , 2019 , 88, 43-49	10.6	19
208	A Note on Instrumental Measures of Adhesiveness and Their Correlation with Sensory Perception. Journal of Texture Studies, 2014 , 45, 74-79	3.6	18
207	Morphological, structural, thermal, and rheological characteristics of starches separated from apples of different cultivars. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 10193-9	5.7	18
206	The effect of glucono-flactone on the gelation time of soybean 11S protein: concentration dependence. <i>Food Hydrocolloids</i> , 1992 , 6, 263-274	10.6	18
205	Differential Scanning Calorimetry and Stress Relaxation of Partially Saponificated Poly(vinyl alcohol)-Dimethyl Sulfoxide-Water System. <i>Polymer Journal</i> , 1989 , 21, 597-602	2.7	18
204	Effects of conformational ordering on protein/polyelectrolyte electrostatic complexation: ionic binding and chain stiffening. <i>Scientific Reports</i> , 2016 , 6, 23739	4.9	18
203	Sucrose release from agar gels: Effects of dissolution order and the network inhomogeneity. <i>Food Hydrocolloids</i> , 2015 , 43, 100-106	10.6	17
202	Microencapsulation of Lactobacillus acidophilus CGMCC1.2686: Correlation Between Bacteria Survivability and Physical Properties of Microcapsules. <i>Food Biophysics</i> , 2015 , 10, 292-299	3.2	17
201	Linear and Nonlinear Rheology of Mixed Polysaccharide Gels. Pt. II. Extrusion, Compression, Puncture and Extension Tests and Correlation with Sensory Evaluation. <i>Journal of Texture Studies</i> , 2014 , 45, 30-46	3.6	17
200	The gelatinization and retrogradation of cornstarch gels in the presence of citric acid. <i>Food Hydrocolloids</i> , 2012 , 27, 390-393	10.6	17
199	A Novel Liquid-Crystalline Phase in Dilute Aqueous Solutions of Methylcellulose. <i>Macromolecular Rapid Communications</i> , 2006 , 27, 971-975	4.8	17
198	The effect of sodium thiocyanate on thermal and rheological properties of kappa-carrageenan and agarose gels. <i>Carbohydrate Polymers</i> , 1989 , 11, 55-66	10.3	17
197	On the temperature dependence of the elasticity of agarose gels. <i>Die Makromolekulare Chemie</i> , 1984 , 185, 2663-2668		17
196	Sucrose release from agar gels and sensory perceived sweetness. <i>Food Hydrocolloids</i> , 2016 , 60, 405-414	10.6	17
195	Structure and tribology of Etarrageenan gels filled with natural oil bodies. <i>Food Hydrocolloids</i> , 2020 , 107, 105945	10.6	17
194	Comparative study on foaming and emulsifying properties of different beta-lactoglobulin aggregates. <i>Food and Function</i> , 2019 , 10, 5922-5930	6.1	16
193	Ambient storage of microencapsulated Lactobacillus plantarum ST-III by complex coacervation of type-A gelatin and gum arabic. <i>Food and Function</i> , 2018 , 9, 1000-1008	6.1	16
192	Phase separation induced molecular fractionation of gum arabicsugar beet pectin systems. <i>Carbohydrate Polymers</i> , 2013 , 98, 699-705	10.3	16

191	Microporous hydrogels of cellulose ether cross-linked with di- or polyfunctional glycidyl ether made for the delivery of bioactive substances. <i>Colloid and Polymer Science</i> , 2011 , 289, 1261-1272	2.4	16	
190	The effect of the linear charge density of carrageenan on the ion binding investigated by differential scanning calorimetry, dc conductivity, and kHz dielectric relaxation. <i>Colloids and Surfaces B: Biointerfaces</i> , 2004 , 38, 231-40	6	16	
189	Electromyography analysis of natural mastication behavior using varying mouthful quantities of two types of gels. <i>Physiology and Behavior</i> , 2016 , 161, 174-182	3.5	16	
188	Gelation of Elactoglobulin and its fibrils in the presence of transglutaminase. <i>Food Hydrocolloids</i> , 2016 , 52, 942-951	10.6	15	
187	Modulation of calcium-induced gelation of pectin by oligoguluronate as compared to alginate. <i>Food Research International</i> , 2019 , 116, 232-240	7	15	
186	Effects of esterified tapioca starch on the physical and thermal properties of Japanese white salted noodles prepared partly by residual heat. <i>Food Hydrocolloids</i> , 2014 , 35, 198-208	10.6	15	
185	The effect of degradation on Ecarrageenan/locust bean gum/konjac glucomannan gels at acidic pH. <i>Carbohydrate Polymers</i> , 2013 , 98, 744-9	10.3	15	
184	Characteristics of Opaque and Translucent Parts of High Temperature Stressed Grains of Rice. <i>Journal of Applied Glycoscience (1999)</i> , 2013 , 60, 61-67	1	15	
183	Polysaccharide-protein interaction: a rheological study of the gel-sol transition of a gelatin-methylcellulose-water system. <i>Biorheology</i> , 1993 , 30, 243-52	1.7	15	
182	Gelation Properties of Soymilk and Soybean 11S Globulin from Japanese-grown Soybeans. <i>Bioscience, Biotechnology and Biochemistry</i> , 1992 , 56, 725-8	2.1	15	
181	Rheological properties of mixtures of protein-polysaccharide-dynamic viscoelasticity of blend gels of acylated gelatin, kappa-carrageenan, and agarose. <i>Biorheology</i> , 1983 , 20, 495-505	1.7	15	
180	Natural eating behavior of two types of hydrocolloid gels as measured by electromyography: Quantitative analysis of mouthful size effects. <i>Food Hydrocolloids</i> , 2016 , 52, 243-252	10.6	14	
179	Improved physicochemical and functional properties of okara, a soybean residue, by nanocellulose technologies for food development [A review. <i>Food Hydrocolloids</i> , 2020 , 109, 105964	10.6	14	
178	Rheological and Thermal Behavior of Mixed Gelatin/Konjac Glucomannan Gels. <i>Journal of Texture Studies</i> , 2014 , 45, 344-353	3.6	14	
177	Effect of annealing temperature on gelatinization of rice starch suspension as studied by rheological and thermal measurements. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 9056-63	5.7	14	
176	Rheological and related study of gelation of xyloglucan in the presence of small molecules and other polysaccharides. <i>Cellulose</i> , 2006 , 13, 365-374	5.5	14	
175	Gel-sol transition in gellan aqueous solutions. <i>Macromolecular Symposia</i> , 1995 , 99, 83-91	0.8	14	
174	Dielectric, viscoelastic and broad-line NMR study of konjac glucomannan films. <i>Carbohydrate Polymers</i> , 1992 , 17, 59-63	10.3	14	

173	THE EFFECT OF MONOVALENT CATIONS AND ANIONS ON THE RHEOLOGICAL PROPERTIES OF KAPPA-CARRAGEENAN GELS1. <i>Journal of Texture Studies</i> , 1988 , 19, 259-273	3.6	14
172	Edible Pickering emulsion stabilized by protein fibrils: Part 2. Effect of dipalmitoyl phosphatidylcholine (DPPC). <i>Food Hydrocolloids</i> , 2017 , 71, 245-251	10.6	13
171	Sucrose release from agar gels: Correlation with sucrose content and rheology. <i>Food Hydrocolloids</i> , 2015 , 43, 132-136	10.6	13
170	Electromyographic texture characterization of hydrocolloid gels as model foods with varying mastication and swallowing difficulties. <i>Food Hydrocolloids</i> , 2015 , 43, 146-152	10.6	13
169	Solution Structure of Molecular Associations Investigated Using NMR for Polysaccharides: Xanthan/Galactomannan Mixtures. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 3027-37	3.4	13
168	Aggregation behaviour and stability of maize germ oil body suspension. Food Chemistry, 2014, 164, 1-6	8.5	13
167	Effect of stereoregularity and molecular weight on the mechanical properties of poly(vinyl alcohol) hydrogel. <i>Journal of Applied Polymer Science</i> , 2011 , 120, 573-578	2.9	13
166	Effect of sodium hydroxide pretreatment on the relaxation spectrum of concentrated agar-agar gels. <i>Rheologica Acta</i> , 1981 , 20, 155-162	2.3	13
165	Longitudinal Vibrations of a Cylindrical Gel in Viscous Liquids in a Method for Measuring Viscoelastic Constants. <i>Japanese Journal of Applied Physics</i> , 1977 , 16, 1127-1133	1.4	13
164	Novel nano-particulated exopolysaccharide produced by Klebsiella sp. PHRC1.001. <i>Carbohydrate Polymers</i> , 2017 , 171, 252-258	10.3	13
163	Interfacial and emulsifying properties of the electrostatic complex of Elactoglobulin fibril and gum Arabic (Acacia Seyal). <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 562, 1-7	5.1	13
162	In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 6878-83	3.4	12
161	In situ nanomechanical properties of natural oil bodies studied using atomic force microscopy. Journal of Colloid and Interface Science, 2020 , 570, 362-374	9.3	12
160	The future trends of food hydrocolloids. <i>Food Hydrocolloids</i> , 2020 , 103, 105713	10.6	12
159	High Acyl Gellan Networks Probed by Rheology and Atomic Force Microscopy. <i>Food Science and Technology Research</i> , 2013 , 19, 201-210	0.8	12
158	The reinforcement of gellan gel network by the immersion into salt solution. <i>International Journal of Biological Macromolecules</i> , 2006 , 38, 145-7	7.9	12
157	The rise process of the electric birefringence of poly-Ebenzyl-l-glutamate at high fields. <i>Colloid and Polymer Science</i> , 1970 , 240, 831-836	2.4	12
156	Structure-gelation research on gallate analogs and xyloglucan by rheology, thermal analysis and NMR. <i>Food Hydrocolloids</i> , 2016 , 52, 447-459	10.6	11

155	Calcium binding and calcium-induced gelation of normal low-methoxyl pectin modified by low molecular-weight polyuronate fraction. <i>Food Hydrocolloids</i> , 2017 , 69, 318-328	10.6	11
154	Conformational Transition of Polyelectrolyte As Influenced by Electrostatic Complexation with Protein. <i>Biomacromolecules</i> , 2016 , 17, 3949-3956	6.9	11
153	Utilization of Ca2+-induced setting of alginate or low methoxyl pectin for noodle production from Japonica rice. <i>LWT - Food Science and Technology</i> , 2018 , 97, 362-369	5.4	11
152	Effect of arabinogalactan protein complex content on emulsification performance of gum arabic. <i>Carbohydrate Polymers</i> , 2019 , 224, 115170	10.3	11
151	Large deformation analysis of gellan gels. <i>Journal of Applied Physics</i> , 2007 , 102, 043507	2.5	11
150	Sol-gel transition of biopolymer dispersions. <i>Macromolecular Symposia</i> , 2000 , 159, 205-214	0.8	11
149	Some Problems in Measurements of Mechanical Properties of Tofu (Soybean Curd) <i>Journal of the Japanese Society for Food Science and Technology</i> , 1992 , 39, 715-721		11
148	Rheology in Food and Health. <i>Nihon Reoroji Gakkaishi</i> , 2007 , 35, 35-47	0.8	11
147	Gels, emulsions and application of hydrocolloids at Phillips Hydrocolloids Research Centre. <i>Food Hydrocolloids</i> , 2018 , 78, 36-46	10.6	10
146	Effect of Gum Arabic, Gum Ghatti and Sugar Beet Pectin as Interfacial Layer on Lipid Digestibility in Oil-in-Water Emulsions. <i>Food Biophysics</i> , 2016 , 11, 292-301	3.2	10
145	Protein/Polysaccharide Electrostatic Complexes and Their Applications in Stabilizing Oil-in-Water Emulsions. <i>Journal of Nutritional Science and Vitaminology</i> , 2015 , 61 Suppl, S168-9	1.1	10
144	EFFECTS OF VARIOUS INGREDIENTS ON THE TEXTURE OF MILK JELLY. <i>Journal of Texture Studies</i> , 1998 , 29, 387-396	3.6	10
143	Effects of Granule Size and Size Distribution on Rheological Behavior of Chemically Modified Potato Starch. <i>Journal of Food Science</i> , 2002 , 67, 1388-1392	3.4	10
142	Rheological studies on commercial egg white using creep and compression measurements. <i>Food Hydrocolloids</i> , 2001 , 15, 415-421	10.6	10
141	Effect of ammonium salts on rheological and thermal properties of kappa-carrageenan gels. <i>Food Hydrocolloids</i> , 1990 , 4, 227-237	10.6	10
140	Differential scanning calorimetry and large deformation behaviour of kappa-carrageenan gels containing alkali metal ions. <i>Colloid and Polymer Science</i> , 1985 , 263, 744-748	2.4	10
139	Improved effects of okara atomized by a water jet system on ե mylase inhibition and butyrate production by. <i>Bioscience, Biotechnology and Biochemistry</i> , 2020 , 84, 1467-1474	2.1	9
138	Ca2+-Induced Egg White Isolate Gels with Various Microstructure. <i>Food Science and Technology Research</i> , 2014 , 20, 1207-1212	0.8	9

137	Physico-chemistry of (1,3)-EGlucans 2009 , 47-118		9
136	Research Survey of Japanese Consumers on Texture Vocabulary (Studies on Japanese texture terms Part 2). <i>Journal of the Japanese Society for Food Science and Technology</i> , 2006 , 53, 327-336	0.2	9
135	Studies on molecular motion of polysaccharides in the solid state by broad-line nuclear magnetic resonance. <i>Journal of Polymer Science, Polymer Physics Edition</i> , 1984 , 22, 95-99		9
134	Rheological Studies of Agar-agar Gels Prepared from Makusa (Gelidium amansii) Gathered in Different Seasons. <i>Journal of the Japanese Society for Food Science and Technology</i> , 1981 , 28, 437-443		9
133	Trivalent iron induced gelation in Artemisia sphaerocephala Krasch. polysaccharide. <i>International Journal of Biological Macromolecules</i> , 2020 , 144, 690-697	7.9	9
132	Effect of acidification on the protection of alginate-encapsulated probiotic based on emulsification/internal gelation. <i>Journal of the Science of Food and Agriculture</i> , 2016 , 96, 4358-66	4.3	9
131	Microencapsulation of probiotic lactobacilli with shellac as moisture barrier and to allow controlled release. <i>Journal of the Science of Food and Agriculture</i> , 2021 , 101, 726-734	4.3	9
130	Surface properties of ion-inducted whey protein gels deposited on cold plasma treated support. <i>Food Hydrocolloids</i> , 2017 , 71, 17-25	10.6	8
129	Tongue-palate squeezing of soft gels in food oral processing. <i>Trends in Food Science and Technology</i> , 2020 , 99, 117-132	15.3	8
128	Linear and Nonlinear Rheology of Mixed Polysaccharide Gels. Pt. I. Young's Modulus, Ring Extension and Uniaxial Compression Tests <i>Journal of Texture Studies</i> , 2013 , 44, 66-74	3.6	8
127	In situ pH-decrease-induced gelation of sodium alginate/carboxymethylated konjac glucomannan. <i>Journal of Applied Polymer Science</i> , 2008 , 108, 2825-2832	2.9	8
126	Comparative Studies on Fracture Characteristics of Food Gels Subjected to Uniaxial Compression and Torsion. <i>Food Science and Technology Research</i> , 2003 , 9, 372-377	0.8	8
125	Globin protein gelation: the effect of pH and temperature. Food Hydrocolloids, 1990, 4, 87-93	10.6	8
124	Spectrophotometric system for the quality evaluation of unevenly colored food <i>Journal of the Japanese Society for Food Science and Technology</i> , 1987 , 34, 163-170		8
123	Transverse Vibrations of Viscoelastic Cylinders. Japanese Journal of Applied Physics, 1977, 16, 19-27	1.4	8
122	Effects of temperature and solvent condition on phase separation induced molecular fractionation of gum arabic/hyaluronan aqueous mixtures. <i>International Journal of Biological Macromolecules</i> , 2018 , 116, 683-690	7.9	8
121	Stability and Oil Migration of Oil-in-Water Emulsions Emulsified by Phase-Separating Biopolymer Mixtures. <i>Journal of Food Science</i> , 2016 , 81, E1971-80	3.4	7
120	Effects of Danhong Injection (?????) and its main components on anticoagulation and fibrinolysis in cultured vein endothelial cells. <i>Chinese Journal of Integrative Medicine</i> , 2016 , 22, 276-83	2.9	7

119	Rheological Properties of Mixed Gels: Gelatin, Konjac Glucomannan and Locust Bean Gum. <i>Food Science and Technology Research</i> , 2014 , 20, 607-611	0.8	7
118	Effects of Time and Temperature of Annealing on Rheological and Thermal Properties of Rice Starch Suspensions during Gelatinization <i>Journal of Texture Studies</i> , 2013 , 44, 21-33	3.6	7
117	The effect of thermal history on the elasticity of K-type gellan gels. <i>Carbohydrate Polymers</i> , 2014 , 113, 189-93	10.3	7
116	In situ observation of heat- and pressure-induced gelation of methylcellulose by fluorescence measurement. <i>International Journal of Biological Macromolecules</i> , 2014 , 64, 409-14	7.9	7
115	Functions of gum arabic and soybean soluble polysaccharide in cooked rice as a texture modifier. <i>Bioscience, Biotechnology and Biochemistry,</i> 2010 , 74, 101-7	2.1	7
114	Participation of ions in promoting intermolecular associations of cell wall polysaccharides. <i>Structural Chemistry</i> , 2009 , 20, 317-324	1.8	7
113	Rheological and DSC studies of mixtures of gellan gum and konjac glucomannan. <i>Macromolecular Symposia</i> , 1997 , 120, 271-280	0.8	7
112	Effects of SDS on the solgel transition of konjac glucomannan in SDS aqueous solutions. <i>Colloid and Polymer Science</i> , 2008 , 286, 663-672	2.4	7
111	Effect of Concentration of Soybean Powder on the Rheological Properties and the Network Structure of Soybean Curd Prepared from Powdered Soybean. <i>Journal of the Japanese Society for Food Science and Technology</i> , 2007 , 54, 143-151	0.2	7
110	Recognition of Japanese Texture Descriptive Terms According to Gender, Age and Region (Studies on Japanese Texture Terms Part 3). <i>Journal of the Japanese Society for Food Science and Technology</i> , 2007 , 54, 488-502	0.2	7
109	Dielectric and viscoelastic properties of cellulose derivatives. <i>Carbohydrate Polymers</i> , 1991 , 16, 189-198	10.3	7
108	Near infrared spectra of caffeine and its related compounds and their application to determination of caffeine content in green tea <i>Journal of the Japanese Society for Food Science and Technology</i> , 1987 , 34, 254-258		7
107	Effect of sugars and polyols on water in agarose gels. <i>Advances in Experimental Medicine and Biology</i> , 1991 , 302, 235-49	3.6	7
106	Fundamentals of composites containing fibrous materials and hydrogels: A review on design and development for food applications. <i>Food Chemistry</i> , 2021 , 364, 130329	8.5	7
105	Acoustic Analysis of the Swallowing Sounds of Food with Different Physical Properties Using the Cervical Auscultation Method. <i>Journal of Texture Studies</i> , 2013 , 44, 169-175	3.6	6
104	Rheological and related studies on industrially important polysaccharides and proteins. <i>Central South University</i> , 2007 , 14, 498-504		6
103	New texture modifiers of food. Interactions between different food hydrocolloids and their usability <i>Kagaku To Seibutsu</i> , 1996 , 34, 197-204	0	6
102	Effect of Tetra-Alkyl Ammonium Bromide on the Rheological and Thermal Properties of Kappa-Carrageenan and Agarose Gels. <i>Polymer Journal</i> , 1990 , 22, 991-999	2.7	6

101	Effect of Coexistence of Gelatin on Gelation of Agarose. <i>Journal of the Japanese Society for Food Science and Technology</i> , 1983 , 30, 368-374		6
100	Rheology in Food and Eating Nihon Reoroji Gakkaishi, 2003 , 31, 41-50	0.8	6
99	Gellan 2015 , 1627-1682		6
98	Food Texture Sensory Evaluation and Instrumental Measurement 2020, 1-13		6
97	Molar mass effect in food and health. Food Hydrocolloids, 2021, 112, 106110	10.6	6
96	Modulating the in vitro gastric digestion of heat-induced beta-lactoglobulin aggregates: Incorporation with polysaccharide. <i>Food Chemistry</i> , 2021 , 354, 129506	8.5	6
95	Surface and rheological properties of egg white albumin/gelatin dispersions gelled on cold plasma-activated glass. <i>Food Hydrocolloids</i> , 2019 , 96, 224-230	10.6	5
94	Collection and Analysis of Foods Associated with Japanese Texture Terms. <i>Journal of the Japanese Society for Food Science and Technology</i> , 2011 , 58, 359-374	0.2	5
93	Chain Release Behavior of Gellan Gels 2009 , 177-186		5
92	Rheological and Thermal Properties of Poly(vinyl alcohol)-Ethylene Glycol-Water Gels. <i>Polymer Journal</i> , 1993 , 25, 463-472	2.7	5
91	The effect of pH on the rheological properties of the mixed gels of acylated gelatin and agarose <i>Journal of the Japanese Society for Food Science and Technology</i> , 1984 , 31, 777-782		5
90	The role of emulsification strategy on the electrospinning of Etarotene-loaded emulsions stabilized by gum Arabic and whey protein isolate <i>Food Chemistry</i> , 2021 , 374, 131826	8.5	5
89	Electrostatic complexation of Elactoglobulin aggregates with Ecarrageenan and the resulting emulsifying and foaming properties. <i>Journal of Dairy Science</i> , 2020 , 103, 8709-8720	4	5
88	Fabrication of iron loaded whey protein isolate/gum Arabic nanoparticles and its adsorption activity on oil-water interface. <i>Food Hydrocolloids</i> , 2021 , 115, 106610	10.6	5
87	Effects of the gel size before ingestion and agarose molecular weight on the textural properties of a gel bolus. <i>Food Hydrocolloids</i> , 2019 , 89, 892-900	10.6	5
86	Effect of pH on the mechanical, interfacial, and emulsification properties of chitosan microgels. <i>Food Hydrocolloids</i> , 2021 , 121, 106972	10.6	5
85	Viscosity Behavior of Xanthan Solutions Measured as a Function of Shear Rate. <i>Nihon Reoroji Gakkaishi</i> , 2015 , 43, 21-26	0.8	4
84	Phase state of the gellan gum-SDS-water system. <i>Journal of Molecular Liquids</i> , 2003 , 106, 249-255	6	4

(1990-2005)

83	The Effect of Sesame Oil Contents on the Mechanical Properties of Gomatofu (Sesame Tofu). <i>Nihon Reoroji Gakkaishi</i> , 2005 , 33, 101-108	0.8	4
82	Rheological and thermal properties of polysaccharide gels extracted fromAhnfeltia plicata. <i>Colloid and Polymer Science</i> , 1986 , 264, 877-882	2.4	4
81	Effect of Freezing Process on the Texture of Vegetables Part II. Measurement of the Puncture Curves of Carrot in Freezing Process. <i>Journal of the Japanese Society for Food Science and Technology</i> , 1976 , 23, 468-473		4
80	Rheology of Hydrogels. <i>Nihon Reoroji Gakkaishi</i> , 1989 , 17, 100-109	0.8	4
79	Colloidal nutrition science to understand food-body interaction. <i>Trends in Food Science and Technology</i> , 2021 , 109, 352-364	15.3	4
78	Co-gelation of gluten and gelatin as a novel functional material formation method. <i>Journal of Food Science and Technology</i> , 2020 , 57, 163-172	3.3	4
77	Novel strategy for enhancing the color intensity of ECarotene: Enriching onto the oil-water interface. <i>Journal of Colloid and Interface Science</i> , 2020 , 573, 215-222	9.3	4
76	Interfacial behaviour of Elactoglobulin aggregates at the oil-water interface studied using particle tracking and dilatational rheology. <i>Soft Matter</i> , 2021 , 17, 2973-2984	3.6	4
75	Interfacial and emulsion-stabilizing properties of zein nanoparticles: differences among zein fractions (日日 and 陸ein). <i>Food and Function</i> , 2021 , 12, 1361-1370	6.1	4
74	Preparation and stability of nano-scaled gel beads of Etarrageenan bound with ferric ions. <i>International Journal of Biological Macromolecules</i> , 2018 , 120, 2523-2529	7.9	4
73	The extrusion test and sensory perception revisited: Some comments on generality and the effect of measurement temperature. <i>Journal of Texture Studies</i> , 2017 , 48, 487-493	3.6	3
72	Effects of xyloglucan with different molar masses on glucose in blood. <i>Food Hydrocolloids</i> , 2020 , 108, 105727	10.6	3
71	In situ observation of gelation of methylcellulose aqueous solution with viscosity measuring instrument in the diamond anvil cell. <i>Carbohydrate Polymers</i> , 2018 , 190, 190-195	10.3	3
70	Interaction of Ternary Biopolymers Obtained from Microwave Dry-heated Mixtures of Gluten, Whey Protein Concentrate and Kaolinite. <i>Food Science and Technology Research</i> , 2017 , 23, 411-415	0.8	3
69	Elution of sodium caseinate from agar-based gel matrixes in simulated gastric fluids. <i>Food Hydrocolloids</i> , 2012 , 27, 427-437	10.6	3
68	INTRODUCTION TO A SPECIAL ISSUE OF JTS. Journal of Texture Studies, 2004, 35, ix-xi	3.6	3
67	Application of network models to physical gels. <i>Macromolecular Symposia</i> , 1995 , 93, 187-194	0.8	3
66	Relationship between texture of Kamaboko and its mechanical properties <i>Journal of the Japanese Society for Food Science and Technology</i> , 1990 , 37, 612-618		3

65	Effects of Polyhydric Alcohols on Thermal and Rheological Properties of Polysaccharide Gels. <i>Agricultural and Biological Chemistry</i> , 1987 , 51, 3231-3238		3
64	EFFECT OF DE-ESTERIFICATION ON THE RHEOLOGICAL PROPERTIES OF ECARRAGEENAN GELS. Journal of Texture Studies, 1981, 12, 447-456	3.6	3
63	Gelling Properties 2021 , 119-170		3
62	Effects of Sugars on the Gel-Sol Transition of Agarose and k -Carrageenan 1994 , 108-110		3
61	Fibrillar assembly of whey protein isolate and gum Arabic as iron carrier for food fortification. <i>Food Hydrocolloids</i> , 2022 , 128, 107608	10.6	3
60	Improving the Stability of Oil Body Emulsions from Diverse Plant Seeds Using Sodium Alginate. <i>Molecules</i> , 2019 , 24,	4.8	2
59	Stability and digestibility of one- or bi-layered medium-chain triglyceride emulsions with gum Arabic and whey protein isolates by pancreatic lipase in vitro. <i>Food and Function</i> , 2018 , 9, 1017-1027	6.1	2
58	Interactions between schizophyllan and curdlan molecules in solutions. <i>Bioactive Carbohydrates and Dietary Fibre</i> , 2014 , 3, 89-95	3.4	2
57	Helical structures from neutral biopolymers182-221		2
56	Effects of Molecular Weight of Added Collagen-Peptide from Porcine Skin on Rheological and Thermal Properties of Agar Gels. <i>Journal of the Japanese Society for Food Science and Technology</i> , 2011 , 58, 150-158	0.2	2
55	Thermal and Rheological Properties of Agaropectin Aqueous Solutions. <i>Journal of the Japanese Society for Food Science and Technology</i> , 2009 , 56, 591-599	0.2	2
54	Rheological and Thermal Studies on the Sol-Gel Transition of Aqueous Solutions of Enzymatically Modified Xyloglucan 1998 , 94-103		2
53	Rheological and Thermal Properties near the Sol-Gel Transition in Gellan Gum Aqueous Solutions and Mixed Polysaccharides <i>Kobunshi Ronbunshu</i> , 1998 , 55, 567-584	О	2
52	Microbial Polysaccharides: Control the Mouthfeel <i>Kobunshi</i> , 1996 , 45, 387-390		2
51	Effects of Sucrose, Glucose, Urea and Guanidine Hydrochloride on the Rheological Properties of Gellan Gum Gels <i>Journal of the Japanese Society for Food Science and Technology</i> , 1994 , 41, 9-16		2
50	Stress relaxation, dynamic viscoelasticity and differential scanning calorimetry of kappa-carrageenan gels containing sodium salts. Effect of anions <i>Journal of the Japanese Society for Food Science and Technology</i> , 1985 , 32, 630-638		2
49	On the Vibrational Properties of High-Elastic Gels. <i>Japanese Journal of Applied Physics</i> , 1974 , 13, 1096-7	1104	2
48	Effect of sucrose on phase and flow behavior of protein-polysaccharide mixtures. <i>Food Hydrocolloids</i> , 2021 , 113, 106455	10.6	2

47	Curdlan 2021 , 887-921		2
46	Anomalous Diffusion of Particles Dispersed in Xanthan Solutions Subjected to Shear Flow. <i>Journal of the Physical Society of Japan</i> , 2018 , 87, 054005	1.5	1
45	Hydrophobically associated networks156-181		1
44	Gelation through phase transformation in synthetic and natural polymers222-255		1
43	Mixed gels287-325		1
42	Techniques for the characterization of physical gels18-63		1
41	Colloidal gels from proteins and peptides256-286		1
40	Ionic gels124-155		1
39	Rheological Studies on Biopolymers. <i>Nihon Reoroji Gakkaishi</i> , 2008 , 36, 195-202	0.8	1
38	Study on soybean curd using compression test and confocal laser scanning microscopy. <i>Journal of the Japanese Society for Food Science and Technology</i> , 2003 , 50, 344-349	0.2	1
37	????????????????. Journal of the Japanese Society for Food Science and Technology, 2005 , 52, 385-390	0.2	1
36	CONFORMATIONAL AND RHEOLOGICAL PROPERTIES OF HYALURONAN 2002 , 89-98		1
35	RHEOLOGICAL AND THERMAL PROPERTIES NEAR THE SOL-GEL TRANSITION OF GELLAN GUM AQUEOUS SOLUTIONS 2000 , 111-128		1
34	Gelation process of amylose-DMSO-water system. <i>Makromolekulare Chemie Macromolecular Symposia</i> , 1993 , 76, 83-88		1
33	Construction of Artemisia sphaerocephala Krasch. Polysaccharide based hydrogel complexed with pullulan and gelatin crosslinked by ferric ions. <i>Food Chemistry</i> , 2021 , 373, 131567	8.5	1
32	Characterization of Japanese Texture Terms by Analyzing Relationships with Various Kinds of Foods. <i>Journal of the Japanese Society for Food Science and Technology</i> , 2018 , 65, 363-374	0.2	1
31	Gel Formation of Natural Polymers. <i>Journal of Fiber Science and Technology</i> , 1993 , 49, P84-P93	0	1
30	Textural Characteristics of Thai Foods 2020 , 151-166		1

29	Emulsions Stabilization and Lipid Digestion Profiles of Sodium Alginate Microgels: Effect of the Crosslink Density. <i>Food Biophysics</i> , 2021 , 16, 346-354	3.2	1
28	Iron encapsulated microstructured gel beads using an emulsification-gelation technique for an alginate-caseinate matrix. <i>Food and Function</i> , 2020 , 11, 3811-3822	6.1	1
27	Effect of simulated saliva components on the digestion of peanut oil body emulsion <i>RSC Advances</i> , 2021 , 11, 30520-30531	3.7	1
26	Developing Soybean Protein Gel-Based Foods from Okara Using the Wet-Type Grinder Method. <i>Foods</i> , 2021 , 10,	4.9	1
25	Electrostatic Interaction-Based Fabrication of Calcium Alginate-Zein Core-Shell Microcapsules of Regulable Shapes and Sizes. <i>Langmuir</i> , 2021 , 37, 10424-10432	4	1
24	Conformational transition and gelation of Etarrageenan in electrostatic complexation with Elactoglobulin aggregates. <i>Food Hydrocolloids</i> , 2021 , 118, 106764	10.6	1
23	Surface properties of gluten deposited on cold plasma-activated glass. <i>Food Hydrocolloids</i> , 2021 , 118, 106778	10.6	1
22	Interaction between bovine serum albumin and chitooligosaccharides: I. Molecular mechanism. <i>Food Chemistry</i> , 2021 , 358, 129853	8.5	1
21	Improve the physical and oxidative stability of O/W emulsions by moderate solidification of the oil phase by stearic acid. <i>LWT - Food Science and Technology</i> , 2021 , 151, 112120	5.4	1
20	Relationship between Rheological Properties and Conformational States of 7S Globulin from Soybeans at Acidic pH 1994 , 355-360		1
19	The pH-responsive phase separation of type-A gelatin and dextran characterized with static multiple light scattering (S-MLS). <i>Food Hydrocolloids</i> , 2022 , 127, 107503	10.6	О
18	Gellan 2014 , 1-46		O
17	Stability improvement of emulsion gel fabricated by Artemisia sphaerocephala Krasch. polysaccharide fractions <i>International Journal of Biological Macromolecules</i> , 2022 , 205, 253-260	7.9	0
16	Hydrophobically modified chitosan microgels stabilize high internal phase emulsions with high compliance <i>Carbohydrate Polymers</i> , 2022 , 288, 119277	10.3	O
15	Seed gum-based delivery systems and their application in encapsulation of bioactive molecules <i>Critical Reviews in Food Science and Nutrition</i> , 2022 , 1-24	11.5	0
14	Everlasting memories of Alina Szczesniak and Malcolm Bourne. <i>Journal of Texture Studies</i> , 2018 , 49, 14	11- ქ.€ 3	
13	The solgel transition64-96		
12	General properties of polymer networks97-123		

LIST OF PUBLICATIONS

11	Rheological Properties of Mixed Agar Gels and Collagen-Peptide from Tilapia Scales. <i>Journal of the Japanese Society for Food Science and Technology</i> , 2012 , 59, 22-33
10	Rheological and Thermal Properties of Gellan Gum Gels 1994 , 105-108
9	Applying Nanotechnology to Okara for Developing Soy Protein Gel-Based Foods. <i>Proceedings</i> (mdpi), 2021 , 70, 30
8	Physicochemical Studies on Gelation of Soybean 7S and 11s Proteins by Glucono-Lactone 1994 , 120-122
7	Effect of DMSO on the Gelation of Amylose 1994 , 183-186
6	Gellan 2015 , 1-48
5	Textural Characteristics of Chinese Foods 2020 , 125-136
4	Textural Characteristics of Greek Foods 2020 , 293-303
3	Corrigendum to Electrostatic complexation of Elactoglobulin aggregates with Ecarrageenan and the resulting emulsifying and foaming properties [J. Dairy Sci. 103:8709 8720). Journal of Dairy 4 Science, 2020, 103, 12160
2	Enhancing the loading and swelling capacity of cellulose crystal through difunctional and multifunctional epoxy crosslinkers and the effects on the elasticity and plasticity: A computational 3.4 study. <i>Journal of Molecular Structure</i> , 2021 , 1228, 129436
7	Pheological and Thickening Properties 2021, 75-117

Rheological and Thickening Properties **2021**, 75-117