Yuesheng Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8317693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ROS Promote Hypoxia-Induced Keratinocyte Epithelial-Mesenchymal Transition by Inducing SOX2 Expression and Subsequent Activation of Wnt/β-Catenin. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-23.	4.0	15
2	Bone marrow mesenchymal stem cells facilitate diabetic wound healing through the restoration of epidermal cell autophagy via the HIF-11±/TGF-121/SMAD pathway. Stem Cell Research and Therapy, 2022, 13, .	5.5	16
3	A Retrospective Study of Factors Influencing the Survival of Modified Meek Micrografting in Severe Burn Patients. Journal of Burn Care and Research, 2021, 42, 331-337.	0.4	1
4	H(+)/Cl(‑) exchange transporter 7 promotes lysosomal acidification‑mediated autophagy in mouse cardiomyocytes. Molecular Medicine Reports, 2021, 23, .	2.4	1
5	Impaired Retrograde Transport Due to Lack of TBC1D5 Contributes to the Trafficking Defect of Lysosomal Cathepsins in Ischemic/Hypoxic Cardiomyocytes. Frontiers in Cardiovascular Medicine, 2021, 8, 796254.	2.4	0
6	CD9 regulates keratinocyte differentiation and motility by recruiting E-cadherin to the plasma membrane and activating the PI3K/Akt pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118574.	4.1	9
7	Epidemiology and outcome analysis of facial burns: A retrospective multicentre study 2011–2015. Burns, 2020, 46, 718-726.	1.9	15
8	MAP4 as a New Candidate in Cardiovascular Disease. Frontiers in Physiology, 2020, 11, 1044.	2.8	16
9	CD38 Causes Autophagic Flux Inhibition and Cardiac Dysfunction Through a Transcriptional Inhibition Pathway Under Hypoxia/Ischemia Conditions. Frontiers in Cell and Developmental Biology, 2020, 8, 191.	3.7	21
10	Application of stable continuous external electric field promotes wound healing in pig wound model. Bioelectrochemistry, 2020, 135, 107578.	4.6	29
11	The Lysosomal Membrane Protein Lamp2 Alleviates Lysosomal Cell Death by Promoting Autophagic Flux in Ischemic Cardiomyocytes. Frontiers in Cell and Developmental Biology, 2020, 8, 31.	3.7	41
12	<p>In situ Fabrication of Nano ZnO/BCM Biocomposite Based on MA Modified Bacterial Cellulose Membrane for Antibacterial and Wound Healing</p> . International Journal of Nanomedicine, 2020, Volume 15, 1-15.	6.7	44
13	TRPV1 activation mitigates hypoxic injury in mouse cardiomyocytes by inducing autophagy through the AMPK signaling pathway. American Journal of Physiology - Cell Physiology, 2020, 318, C1018-C1029.	4.6	14
14	Epidemiological Investigation of Elderly Patients with Severe Burns at a Major Burn Center in Southwest China. Medical Science Monitor, 2020, 26, e918537.	1.1	8
15	Myocardial Adipose Triglyceride Lipase Overexpression Protects against Burn-Induced Cardiac Lipid Accumulation and Injury. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-16.	4.0	2
16	Phosphorylation of Microtubule- Associated Protein 4 Promotes Hypoxic Endothelial Cell Migration and Proliferation. Frontiers in Pharmacology, 2019, 10, 368.	3.5	15
17	Involvement of autophagy in hypoxia-BNIP3 signaling to promote epidermal keratinocyte migration. Cell Death and Disease, 2019, 10, 234.	6.3	45
18	Cardiac proteomics reveals the potential mechanism of microtubule associated protein 4 phosphorylation-induced mitochondrial dysfunction. Burns and Trauma, 2019, 7, 8.	4.9	5

YUESHENG HUANG

#	Article	IF	CITATIONS
19	Keratinocyte electrotaxis induced by physiological pulsed direct current electric fields. Bioelectrochemistry, 2019, 127, 113-124.	4.6	34
20	CD9 regulates keratinocyte migration by negatively modulating the sheddase activity of ADAM17. International Journal of Biological Sciences, 2019, 15, 493-506.	6.4	15
21	High Glucose Suppresses Keratinocyte Migration Through the Inhibition of p38 MAPK/Autophagy Pathway. Frontiers in Physiology, 2019, 10, 24.	2.8	48
22	Microtubule-associated protein 4 phosphorylation regulates epidermal keratinocyte migration and proliferation. International Journal of Biological Sciences, 2019, 15, 1962-1976.	6.4	24
23	Decreased α-tubulin acetylation induced by an acidic environment impairs autophagosome formation and leads to rat cardiomyocyte injury. Journal of Molecular and Cellular Cardiology, 2019, 127, 143-153.	1.9	8
24	Autophagy is required for the directed motility of keratinocytes driven by electric fields. FASEB Journal, 2019, 33, 3922-3935.	0.5	12
25	Microtubule associated protein 4 phosphorylation leads to pathological cardiac remodeling in mice. EBioMedicine, 2018, 37, 221-235.	6.1	33
26	A novel FPCL model producing directional contraction through induction of fibroblast alignment by biphasic pulse direct current electric field. Experimental Cell Research, 2018, 371, 426-434.	2.6	15
27	A Novel Mechanism of Mesenchymal Stromal Cell-Mediated Protection against Sepsis: Restricting Inflammasome Activation in Macrophages by Increasing Mitophagy and Decreasing Mitochondrial ROS. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	4.0	40
28	FG-4592 Accelerates Cutaneous Wound Healing by Epidermal Stem Cell Activation via HIF-1α Stabilization. Cellular Physiology and Biochemistry, 2018, 46, 2460-2470.	1.6	19
29	Epidemiologic and clinical characteristics of severe burn patients: results of a retrospective multicenter study in China, 2011–2015. Burns and Trauma, 2018, 6, 14.	4.9	43
30	Electric field-induced suppression of PTEN drives epithelial-to-mesenchymal transition via mTORC1 activation. Journal of Dermatological Science, 2017, 85, 96-105.	1.9	13
31	Notch1 Signaling Contributes to Hypoxia-induced High Expression of Integrin β1 in Keratinocyte Migration. Scientific Reports, 2017, 7, 43926.	3.3	20
32	Mesenchymal stem cells in alleviating sepsis-induced mice cardiac dysfunction via inhibition of mTORC1-p70S6K signal pathway. Cell Death Discovery, 2017, 3, 16097.	4.7	10
33	<i>Atgl</i> deficiency induces podocyte apoptosis and leads to glomerular filtration barrier damage. FEBS Journal, 2017, 284, 1070-1081.	4.7	30
34	The progress of Chinese burn medicine from the Third Military Medical University—in memory of its pioneer, Professor Li Ao. Burns and Trauma, 2017, 5, 16.	4.9	20
35	<scp>BNIP</scp> 3 promotes the motility and migration of keratinocyte under hypoxia. Experimental Dermatology, 2017, 26, 416-422.	2.9	20
36	Hypoxia Regulates mTORC1-Mediated Keratinocyte Motility and Migration via the AMPK Pathway. PLoS ONE, 2017, 12, e0169155.	2.5	13

YUESHENG HUANG

#	Article	IF	CITATIONS
37	Extracellular pH regulates autophagy via the AMPK–ULK1 pathway in rat cardiomyocytes. FEBS Letters, 2016, 590, 3202-3212.	2.8	16
38	Analysis of Grayscale Characteristics in Images of Labeled Microtubules from Cultured Cardiac Myocytes. Microscopy and Microanalysis, 2015, 21, 334-342.	0.4	7
39	A Quantitative Method for Microtubule Analysis in Fluorescence Images. Microscopy and Microanalysis, 2015, 21, 1582-1590.	0.4	2
40	Pigment Epithelium-Derived Factor Induces Endothelial Barrier Dysfunction via p38/MAPK Phosphorylation. BioMed Research International, 2015, 2015, 1-7.	1.9	6
41	A large-scale screen reveals genes that mediate electrotaxis in <i>Dictyostelium discoideum</i> . Science Signaling, 2015, 8, ra50.	3.6	39
42	Pigment epithelium-derived factor regulates microvascular permeability through adipose triglyceride lipase in sepsis. Clinical Science, 2015, 129, 49-61.	4.3	23
43	The Galvanotactic Migration of Keratinocytes is Enhanced by Hypoxic Preconditioning. Scientific Reports, 2015, 5, 10289.	3.3	31
44	Tetraspanins in Cell Migration. Cell Adhesion and Migration, 2015, 9, 406-415.	2.7	55
45	Role of Ran-regulated nuclear-cytoplasmic trafficking of pVHL in the regulation of microtubular stability-mediated HIF-11± in hypoxic cardiomyocytes. Scientific Reports, 2015, 5, 9193.	3.3	9
46	P38/MAPK contributes to endothelial barrier dysfunction via MAP4 phosphorylation-dependent microtubule disassembly in inflammation-induced acute lung injury. Scientific Reports, 2015, 5, 8895.	3.3	64
47	Switch from αvβ5 to αvβ6 integrin is required for CD9â€regulated keratinocyte migration and MMPâ€9 activation. FEBS Letters, 2014, 588, 4044-4052.	2.8	10
48	Guideline for diagnosis, prophylaxis and treatment of invasive fungal infection post burn injury in China 2013. Burns and Trauma, 2014, 2, 45.	0.7	14
49	Hypoxia regulates CD9-mediated keratinocyte migration via the P38/MAPK pathway. Scientific Reports, 2014, 4, 6304.	3.3	20
50	Prospective clinical and experimental studies on the cardioprotective effect of ulinastatin following severe burns. Burns, 2008, 34, 674-680.	1.9	26
51	A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns, 2007, 33, 161-166.	1.9	142
52	Transfection of antisense p38α gene ameliorates myocardial cell injury mediated by hypoxia and burn serum. Burns, 2007, 33, 599-605.	1.9	11
53	Clinical study of a formula for delayed rapid fluid resuscitation for patients with burn shock. Burns, 2005, 31, 617-622.	1.9	14
54	Molecular Mechanism of c-jun Antisense Gene Transfection in Alleviating Injury of Cardiomyocytes Treated with Burn Serum and Hypoxia. World Journal of Surgery, 2004, 28, 951-957.	1.6	5

#	Article	IF	CITATIONS
55	Measures for preventing early postburn damage improve survival rate of burn patients. Burns, 2004, 30, 808-812.	1.9	5
56	Roles of ischemia and hypoxia and the molecular pathogenesis of post-burn cardiac shock. Burns, 2003, 29, 828-833.	1.9	53
57	Effects of Early Eschar Excision En Masse at One Operation for Prevention and Treatment of Organ Dysfunction in Severely Burned Patients. World Journal of Surgery, 1999, 23, 1272-1278.	1.6	20