Johann Coraux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8317272/publications.pdf

Version: 2024-02-01

147801 106344 4,711 65 31 65 h-index citations g-index papers 67 67 67 5852 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Copper-assisted oxidation of catechols into quinone derivatives. Chemical Science, 2021, 12, 2257-2267.	7.4	16
2	Characterization of room-temperature in-plane magnetization in thin flakes of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Cr</mml:mi><mml:msub><mml:mi .<="" 2021,="" 5,="" a="" magnetometer.="" materials,="" physical="" review="" single-spin="" td="" with=""><td>>⊉ek/mml</td><td>:r26 < mml:m</td></mml:mi></mml:msub></mml:mrow></mml:math>	> ⊉e k/mml	:r 26 < mml:m
3	Dispersing and semi-flat bands in the wide band gap two-dimensional semiconductor bilayer silicon oxide. 2D Materials, 2021, 8, 035021.	4.4	3
4	Nano-sheets of two-dimensional polymers with dinuclear (arene)ruthenium nodes, synthesised at a liquid/liquid interface. Nanotechnology, 2021, 32, 355603.	2.6	0
5	Role of the Structure and Reactivity of Cu and Ag Surfaces in the Formation of a 2D Metal–Hexahydroxytriphenylene Network. Journal of Physical Chemistry C, 2021, 125, 17333-17341.	3.1	12
6	How to induce superconductivity in epitaxial graphene via remote proximity effect through an intercalated gold layer. 2D Materials, 2021, 8, 015002.	4.4	6
7	Depressions by stacking faults in nanorippled graphene on metals. 2D Materials, 2020, 7, 025016.	4.4	4
8	Synthesis of epitaxial monolayer Janus SPtSe. Npj 2D Materials and Applications, 2020, 4, .	7.9	55
9	Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Research, 2020, 13, 3358-3363.	10.4	175
10	Fermi resonance in the Raman spectrum of graphene. Physical Review B, 2020, 102, .	3.2	6
11	Anharmonicity in Raman-active phonon modes in atomically thin <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>าธ.2<td>::msub></td></td></mml:mn></mml:msub></mml:math>	า ธ. 2 <td>::msub></td>	::msub>
12	Decoupling Molybdenum Disulfide from Its Substrate by Cesium Intercalation. Journal of Physical Chemistry C, 2020, 124, 12397-12408.	3.1	9
13	In-Plane Magnetic Domains and NÃ \otimes el-like Domain Walls in Thin Flakes of the Room Temperature CrTe ₂ Van der Waals Ferromagnet. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30702-30710.	8.0	63
14	Elementary processes governing V ₂ AlC chemical etching in HF. RSC Advances, 2020, 10, 25266-25274.	3.6	19
15	Structure of graphene and a surface carbide grown on the (0001) surface of rhenium. Physical Review Materials, 2020, 4, .	2.4	0
16	Temperature-Controlled Rotational Epitaxy of Graphene. Nano Letters, 2019, 19, 4594-4600.	9.1	19
17	Confined step-flow growth of Cu intercalated between graphene and a Ru(0 0 0 1) surface. 2D Mate 2019, 6, 035004.	rials, 4.4	4
18	Electronic Band Structure of Ultimately Thin Silicon Oxide on Ru(0001). ACS Nano, 2019, 13, 4720-4730.	14.6	14

#	Article	IF	CITATIONS
19	Coherence and Density Dynamics of Excitons in a Single-Layer MoS ₂ Reaching the Homogeneous Limit. ACS Nano, 2019, 13, 3500-3511.	14.6	26
20	Evolution of inter-layer coupling in artificially stacked bilayer MoS ₂ . Nanoscale Advances, 2019, 1, 4398-4405.	4.6	8
21	Cathodoluminescence enhancement and quenching in type-I van der Waals heterostructures: Cleanliness of the interfaces and defect creation. Physical Review Materials, 2019, 3, .	2.4	18
22	Graphene as a Mechanically Active, Deformable Two-Dimensional Surfactant. Journal of Physical Chemistry Letters, 2018, 9, 2523-2531.	4.6	19
23	Unravelling external perturbation effects on the optical phonon response of graphene. Journal of Raman Spectroscopy, 2018, 49, 130-145.	2.5	26
24	Size-Selective Carbon Clusters as Obstacles to Graphene Growth on a Metal. Nano Letters, 2018, 18, 4812-4820.	9.1	7
25	Soluble Twoâ€Dimensional Covalent Organometallic Polymers by (Arene)Rutheniumâ€Sulfur Chemistry. Chemistry - A European Journal, 2017, 23, 10969-10973.	3.3	3
26	Weakly Trapped, Charged, and Free Excitons in Single-Layer MoS ₂ in the Presence of Defects, Strain, and Charged Impurities. ACS Nano, 2017, 11, 11206-11216.	14.6	44
27	Toward Moiré engineering in 2D materials via dislocation theory. Applied Materials Today, 2017, 9, 240-250.	4.3	44
28	Intercalating cobalt between graphene and iridium (111): Spatially dependent kinetics from the edges. Physical Review Materials, 2017, 1 , .	2.4	8
29	Universal classification of twisted, strained and sheared graphene moir \tilde{A} \otimes superlattices. Scientific Reports, 2016, 6, 25670.	3.3	48
30	Unconventional magnetisation texture in graphene/cobalt hybrids. Scientific Reports, 2016, 6, 24783.	3.3	38
31	Equal variations of the Fermi level and work function in graphene at the nanoscale. Nanoscale, 2016, 8, 15162-15166.	5.6	19
32	The formation of the smallest fullerene-like carbon cages on metal surfaces. Nanoscale, 2016, 8, 2561-2567.	5.6	6
33	Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt–Graphene Heterostructures. Nano Letters, 2016, 16, 145-151.	9.1	120
34	Disorder and screening in decoupled graphene on a metallic substrate. Physical Review B, 2015, 91, .	3.2	11
35	Degenerate epitaxy-driven defects in monolayer silicon oxide on ruthenium. Physical Review B, 2015, 92,	3.2	11
36	Strain Relaxation in CVD Graphene: Wrinkling with Shear Lag. Nano Letters, 2015, 15, 5098-5104.	9.1	73

#	Article	IF	Citations
37	Surface alloying upon Co intercalation between graphene and Ir(111). Carbon, 2015, 94, 554-559.	10.3	27
38	Europium underneath graphene on $Ir(111)$: Intercalation mechanism, magnetism, and band structure. Physical Review B, 2014, 90, .	3.2	67
39	Cobalt intercalation at the graphene/iridium(111) interface: Influence of rotational domains, wrinkles, and atomic steps. Applied Physics Letters, 2014, 104, .	3.3	40
40	Growth of epitaxial graphene: Theory and experiment. Physics Reports, 2014, 542, 195-295.	25.6	228
41	Modulating charge density and inelastic optical response in graphene by atmospheric pressure localized intercalation through wrinkles. Carbon, 2014, 68, 73-79.	10.3	16
42	Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils. Advanced Functional Materials, 2014, 24, 964-970.	14.9	71
43	Strains Induced by Point Defects in Graphene on a Metal. Physical Review Letters, 2013, 111, 085501.	7.8	51
44	Induced Superconductivity in Graphene Grown on Rhenium. Physical Review Letters, 2013, 111, 246805.	7.8	74
45	Effect of preparation on the commensurabilities and thermal expansion of graphene on $Ir(111)$ between 10 and 1300 K. Physical Review B, 2013, 88, .	3.2	27
46	Functional Hybrid Systems Based on Large-Area High-Quality Graphene. Accounts of Chemical Research, 2013, 46, 2193-2201.	15.6	28
47	Local deformations and incommensurability of high-quality epitaxial graphene on a weakly interacting transition metal. Physical Review B, 2012, 86, .	3.2	20
48	Interplay of Wrinkles, Strain, and Lattice Parameter in Graphene on Iridium. Nano Letters, 2012, 12, 678-682.	9.1	131
49	Mechanical exfoliation of epitaxial graphene on Ir(111) enabled by Br2intercalation. Journal of Physics Condensed Matter, 2012, 24, 314208.	1.8	11
50	Air-Protected Epitaxial Graphene/Ferromagnet Hybrids Prepared by Chemical Vapor Deposition and Intercalation. Journal of Physical Chemistry Letters, 2012, 3, 2059-2063.	4.6	54
51	Perpendicular magnetic anisotropy of cobalt films intercalated under graphene. Applied Physics Letters, 2012, 101, .	3.3	82
52	Magnetism of cobalt nanoclusters on graphene on iridium. Applied Physics Letters, 2011, 99, .	3.3	34
53	Graphene on Ir(111): Physisorption with Chemical Modulation. Physical Review Letters, 2011, 107, 036101.	7.8	270
54	Fast computation of scattering maps of nanostructures using graphical processing units. Journal of Applied Crystallography, 2011, 44, 635-640.	4.5	31

#	Article	lF	CITATIONS
55	Growth temperature dependent graphene alignment on Ir(111). Applied Physics Letters, 2011, 98, .	3.3	95
56	Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire. Applied Physics Letters, $2011,98,.$	3.3	77
57	Ultrathin epitaxial cobalt films on graphene for spintronic investigations and applications. New Journal of Physics, 2010, 12, 103040.	2.9	74
58	<i>In situ</i> observation of stress relaxation in epitaxial graphene. New Journal of Physics, 2009, 11, 113056.	2.9	107
59	A versatile fabrication method for cluster superlattices. New Journal of Physics, 2009, 11, 103045.	2.9	164
60	Dirac Cones and Minigaps for Graphene on Ir(111). Physical Review Letters, 2009, 102, 056808.	7.8	516
61	Selecting a single orientation for millimeter sized graphene sheets. Applied Physics Letters, 2009, 95, .	3.3	101
62	Structure of epitaxial graphene on Ir(111). New Journal of Physics, 2008, 10, 043033.	2.9	397
63	Structural Coherency of Graphene on Ir(111). Nano Letters, 2008, 8, 565-570.	9.1	904
64	In situ resonant x-ray study of vertical correlation and capping effects during GaNâ [•] AlN quantum dot growth. Applied Physics Letters, 2006, 88, 153125.	3.3	31
65	In situ andex situ grazing incidence diffraction anomalous fine structure study of GaN/AlN quantum dots. Physica Status Solidi (B): Basic Research, 2006, 243, 1519-1523.	1.5	3