Jorma Palvimo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8317129/publications.pdf Version: 2024-02-01

LODMA DALVIMO

#	Article	IF	CITATIONS
1	Reprogramming of glucocorticoid receptor function by hypoxia. EMBO Reports, 2022, 23, e53083.	4.5	7
2	SUMOylation regulates the protein network and chromatin accessibility at glucocorticoid receptor-binding sites. Nucleic Acids Research, 2021, 49, 1951-1971.	14.5	23
3	Chromatin-directed proteomics-identified network of endogenous androgen receptor in prostate cancer cells. Oncogene, 2021, 40, 4567-4579.	5.9	20
4	The androgen receptor depends on ligandâ€binding domain dimerization for transcriptional activation. EMBO Reports, 2021, 22, e52764.	4.5	20
5	BCOR-coupled H2A monoubiquitination represses a subset of androgen receptor target genes regulating prostate cancer proliferation. Oncogene, 2020, 39, 2391-2407.	5.9	9
6	IRF2BP2 modulates the crosstalk between glucocorticoid and TNF signaling. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192, 105382.	2.5	13
7	Lack of androgen receptor SUMOylation results in male infertility due to epididymal dysfunction. Nature Communications, 2019, 10, 777.	12.8	15
8	Chromatin SUMOylation in heat stress: To protect, pause and organise?. BioEssays, 2017, 39, 1600263.	2.5	33
9	Agonist-specific Protein Interactomes of Glucocorticoid and Androgen Receptor as Revealed by Proximity Mapping. Molecular and Cellular Proteomics, 2017, 16, 1462-1474.	3.8	55
10	Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome. Nucleic Acids Research, 2017, 45, 619-630.	14.5	110
11	Global SUMOylation on active chromatin is an acute heat stress response restricting transcription. Genome Biology, 2015, 16, 153.	8.8	88
12	SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Research, 2015, 43, 848-861.	14.5	55
13	Androgen receptor- and PIAS1-regulated gene programs in molecular apocrine breast cancer cells. Molecular and Cellular Endocrinology, 2015, 414, 91-98.	3.2	10
14	Electrophilic Lipid Mediator 15-Deoxy-Δ ^{12,14} -Prostaglandin J ₂ Modifies Glucocorticoid Signaling via Receptor SUMOylation. Molecular and Cellular Biology, 2014, 34, 3202-3213.	2.3	5
15	SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner. Nucleic Acids Research, 2014, 42, 8310-8319.	14.5	55
16	Proto-oncogene PIM-1 is a novel estrogen receptor target associating with high grade breast tumors. Molecular and Cellular Endocrinology, 2013, 365, 270-276.	3.2	40
17	The androgen receptor. Molecular and Cellular Endocrinology, 2012, 352, 1-3.	3.2	14
18	Steroid up-regulation of FKBP51 and its role in hormone signaling. Current Opinion in Pharmacology, 2011, 11, 326-331.	3.5	145

Jorma Palvimo

#	Article	IF	CITATIONS
19	Overexpression of SUMO perturbs the growth and development of Caenorhabditis elegans. Cellular and Molecular Life Sciences, 2011, 68, 3219-3232.	5.4	15
20	Androgen receptor: acting in the three-dimensional chromatin landscape of prostate cancer cells. Hormone Molecular Biology and Clinical Investigation, 2011, 5, 17-26.	0.7	1
21	<i>Sumo-1</i> Function Is Dispensable in Normal Mouse Development. Molecular and Cellular Biology, 2008, 28, 5381-5390.	2.3	158
22	Disruption of the murine PIASx gene results in reduced testis weight. Journal of Molecular Endocrinology, 2005, 34, 645-654.	2.5	48
23	SUMO-1 promotes association of SNURF (RNF4) with PML nuclear bodies. Experimental Cell Research, 2005, 304, 224-233.	2.6	66
24	Coregulator Recruitment and Histone Modifications in Transcriptional Regulation by the Androgen Receptor. Molecular Endocrinology, 2004, 18, 2633-2648.	3.7	166
25	Expression of Androgen Receptor Coregulators in Prostate Cancer. Clinical Cancer Research, 2004, 10, 1032-1040.	7.0	122
26	Transcriptional coregulator SNURF (RNF4) possesses ubiquitin E3 ligase activity. FEBS Letters, 2004, 560, 56-62.	2.8	48
27	Acetylation of Androgen Receptor Enhances Coactivator Binding and Promotes Prostate Cancer Cell Growth. Molecular and Cellular Biology, 2003, 23, 8563-8575.	2.3	244
28	PIAS proteins promote SUMO-1 conjugation to STAT1. Blood, 2003, 102, 3311-3313.	1.4	135
29	PIAS Proteins Modulate Transcription Factors by Functioning as SUMO-1 Ligases. Molecular and Cellular Biology, 2002, 22, 5222-5234.	2.3	364
30	Involvement of Proteasome in the Dynamic Assembly of the Androgen Receptor Transcription Complex. Journal of Biological Chemistry, 2002, 277, 48366-48371.	3.4	168
31	Inhibition of Androgen Receptor (AR) Function by the Reproductive Orphan Nuclear Receptor DAX-1. Molecular Endocrinology, 2002, 16, 515-528.	3.7	124
32	Androgen Receptor Acetylation Governs trans Activation and MEKK1-Induced Apoptosis without Affecting In Vitro Sumoylation and trans -Repression Function. Molecular and Cellular Biology, 2002, 22, 3373-3388.	2.3	155
33	Cooperative Coactivation of Estrogen Receptor α in ZR-75 Human Breast Cancer Cells by SNURF and TATA-binding Protein. Journal of Biological Chemistry, 2002, 277, 2485-2497.	3.4	38
34	Androgen Receptor-interacting Protein 3 and Other PIAS Proteins Cooperate with Glucocorticoid Receptor-interacting Protein 1 in Steroid Receptor-dependent Signaling. Journal of Biological Chemistry, 2002, 277, 17781-17788.	3.4	57
35	The Nuclear Receptor Interaction Domain of GRIP1 Is Modulated by Covalent Attachment of SUMO-1. Journal of Biological Chemistry, 2002, 277, 30283-30288.	3.4	121
36	Pattern of Somatic Androgen Receptor Gene Mutations in Patients with Hormone-Refractory Prostate Cancer. Laboratory Investigation, 2002, 82, 1591-1598.	3.7	64

Jorma Palvimo

#	Article	IF	CITATIONS
37	Disrupted Amino- and Carboxyl-Terminal Interactions of the Androgen Receptor Are Linked to Androgen Insensitivity. Molecular Endocrinology, 2001, 15, 923-935.	3.7	105
38	Cyclin D1 Binds the Androgen Receptor and Regulates Hormone-Dependent Signaling in a p300/CBP-Associated Factor (P/CAF)-Dependent Manner. Molecular Endocrinology, 2001, 15, 797-811.	3.7	178
39	Novel Assay for Determination of Androgen Bioactivity in Human Serum. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 1539-1544.	3.6	42
40	Coregulator Small Nuclear RING Finger Protein (SNURF) Enhances Sp1- and Steroid Receptor-mediated Transcription by Different Mechanisms. Journal of Biological Chemistry, 2000, 275, 571-579.	3.4	67
41	Cooperation Among Stat1, Glucocorticoid Receptor, and PU.1 in Transcriptional Activation of the High-Affinity Fcl ³ Receptor I in Monocytes. Journal of Immunology, 2000, 164, 5689-5697.	0.8	76
42	ARIP3 (Androgen Receptor-Interacting Protein 3) and Other PIAS (Protein Inhibitor of Activated STAT) Proteins Differ in Their Ability to Modulate Steroid Receptor-Dependent Transcriptional Activation. Molecular Endocrinology, 2000, 14, 1986-2000.	3.7	144
43	Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14145-14150.	7.1	401
44	Ubc9 Interacts with the Androgen Receptor and Activates Receptor-dependent Transcription. Journal of Biological Chemistry, 1999, 274, 19441-19446.	3.4	159
45	A Testis-specific Androgen Receptor Coregulator That Belongs to a Novel Family of Nuclear Proteins. Journal of Biological Chemistry, 1999, 274, 3700-3704.	3.4	136
46	Identification of a Novel RING Finger Protein as a Coregulator in Steroid Receptor-Mediated Gene Transcription. Molecular and Cellular Biology, 1998, 18, 5128-5139.	2.3	197
47	CREB-binding protein in androgen receptor-mediated signaling. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2122-2127.	7.1	232
48	Interaction between the Amino- and Carboxyl-terminal Regions of the Rat Androgen Receptor Modulates Transcriptional Activity and Is Influenced by Nuclear Receptor Coactivators. Journal of Biological Chemistry, 1997, 272, 29821-29828.	3.4	323
49	Interaction of Androgen Receptors with Androgen Response Element in Intact Cells. Journal of Biological Chemistry, 1997, 272, 15973-15979.	3.4	74
50	The presence of a transcription activation function in the hormone-binding domain of androgen receptor is revealed by studies in yeast cells. FEBS Letters, 1997, 412, 355-358.	2.8	51
51	Mutual Transcriptional Interference between RelA and Androgen Receptor. Journal of Biological Chemistry, 1996, 271, 24151-24156.	3.4	191
52	A single-base substitution in the proximal Sp1 site of the human low density lipoprotein receptor promoter as a cause of heterozygous familial hypercholesterolemia Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10526-10530.	7.1	95
53	Androgen Receptor and Mechanism of Androgen Action. Annals of Medicine, 1993, 25, 83-89.	3.8	84