List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8317026/publications.pdf Version: 2024-02-01

IEDOEN HEDE RAAL

#	Article	IF	CITATIONS
1	Possible role for rare <i>TRPM7</i> variants in patients with hypomagnesaemia with secondary hypocalcaemia. Nephrology Dialysis Transplantation, 2023, 38, 679-690.	0.4	6
2	Magnesium to prevent kidney disease–associated vascular calcification: crystal clear?. Nephrology Dialysis Transplantation, 2022, 37, 421-429.	0.4	22
3	Gitelman-Like Syndrome Caused by Pathogenic Variants in mtDNA. Journal of the American Society of Nephrology: JASN, 2022, 33, 305-325.	3.0	26
4	Colonic expression of calcium transporter TRPV6 is regulated by dietary sodium butyrate. Pflugers Archiv European Journal of Physiology, 2022, 474, 293-302.	1.3	3
5	Author's Reply: The Subcellular Localization of RRAGD. Journal of the American Society of Nephrology: JASN, 2022, , ASN.2022030252.	3.0	0
6	The association between hypomagnesemia and poor glycaemic control in type 1 diabetes is limited to insulin resistant individuals. Scientific Reports, 2022, 12, 6433.	1.6	7
7	Mechanisms of ion transport regulation by HNF1Î ² in the kidney: beyond transcriptional regulation of channels and transporters. Pflugers Archiv European Journal of Physiology, 2022, 474, 901-916.	1.3	5
8	Gitelmanâ€like syndrome caused by pathogenic variants in mitochondrial DNA. FASEB Journal, 2022, 36, .	0.2	0
9	Mechanisms of proton pump inhibitorâ€induced hypomagnesemia. Acta Physiologica, 2022, 235, .	1.8	31
10	FAM111A is dispensable for electrolyte homeostasis in mice. Scientific Reports, 2022, 12, .	1.6	3
11	Framework From a Multidisciplinary Approach for Transitioning Variants of Unknown Significance From Clinical Genetic Testing in Kidney Disease to a Definitive Classification. Kidney International Reports, 2022, , .	0.4	0
12	Structural and functional comparison of magnesium transporters throughout evolution. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	21
13	The genetic spectrum of Gitelman(-like) syndromes. Current Opinion in Nephrology and Hypertension, 2022, 31, 508-515.	1.0	15
14	Mechanisms coupling sodium and magnesium reabsorption in the distal convoluted tubule of the kidney. Acta Physiologica, 2021, 231, e13528.	1.8	27
15	Low plasma magnesium concentration and future abdominal aortic calcifications in moderate chronic kidney disease. BMC Nephrology, 2021, 22, 71.	0.8	3
16	Bifunctional protein PCBD2 operates as a coâ€factor for hepatocyte nuclear factor 1β and modulates gene transcription. FASEB Journal, 2021, 35, e21366.	0.2	1
17	Functional tests to guide management in an adult with loss of function of type-1 angiotensin II receptor. Pediatric Nephrology, 2021, 36, 2731-2737.	0.9	0
18	The phenotypic and genetic spectrum of patients with heterozygous mutations in cyclin M2 (CNNM2). Human Mutation, 2021, 42, 473-486.	1.1	21

JEROEN H F DE BAAIJ

#	Article	IF	CITATIONS
19	Genetic and drug-induced hypomagnesemia: different cause, same mechanism. Proceedings of the Nutrition Society, 2021, 80, 327-338.	0.4	11
20	Defects in KCNJ16 Cause a Novel Tubulopathy with Hypokalemia, Salt Wasting, Disturbed Acid-Base Homeostasis, and Sensorineural Deafness. Journal of the American Society of Nephrology: JASN, 2021, 32, 1498-1512.	3.0	46
21	Cyclin M2 (CNNM2) knockout mice show mild hypomagnesaemia and developmental defects. Scientific Reports, 2021, 11, 8217.	1.6	18
22	The role of Transcription Factor Hepatocyte Nuclear Factor 1β in a Transcriptional Network Regulating Cell Polarity in Epithelial Kidney Cells. FASEB Journal, 2021, 35, .	0.2	0
23	Serum Magnesium Is Inversely Associated With Heart Failure, Atrial Fibrillation, and Microvascular Complications in Type 2 Diabetes. Diabetes Care, 2021, 44, 1757-1765.	4.3	21
24	ARL15 modulates magnesium homeostasis through N-glycosylation of CNNMs. Cellular and Molecular Life Sciences, 2021, 78, 5427-5445.	2.4	18
25	Diagnostic Dilemma in an Adolescent Girl with an Eating Disorder, Intellectual Disability, and Hypomagnesemia. Nephron, 2021, 145, 717-720.	0.9	4
26	mTOR-Activating Mutations in RRAGD Are Causative for Kidney Tubulopathy and Cardiomyopathy. Journal of the American Society of Nephrology: JASN, 2021, 32, 2885-2899.	3.0	24
27	CNNM proteins selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. PLoS Biology, 2021, 19, e3001496.	2.6	18
28	Calciprotein particle inhibition explains magnesium-mediated protection against vascular calcification. Nephrology Dialysis Transplantation, 2020, 35, 765-773.	0.4	43
29	Magnesium prevents vascular calcification inÂKlotho deficiency. Kidney International, 2020, 97, 487-501.	2.6	50
30	Genetics of renovascular hypertension in children. Journal of Hypertension, 2020, 38, 1964-1970.	0.3	15
31	Dietary Mg2+ Intake and the Na+/Mg2+ Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine Cardiomyocytes. International Journal of Molecular Sciences, 2020, 21, 8221.	1.8	4
32	Low serum magnesium as a risk factor for peripheral artery disease in chronic kidney disease: an open verdict. Nephrology Dialysis Transplantation, 2020, 35, 1831-1833.	0.4	1
33	Metformin regulates TRPM6, a potential explanation for magnesium imbalance in type 2 diabetes patients. Canadian Journal of Physiology and Pharmacology, 2020, 98, 400-411.	0.7	15
34	ARL15 Regulates CNNM2â€dependent Mg 2+ Transport by Modulating its Nâ€linked Glycosylation. FASEB Journal, 2020, 34, 1-1.	0.2	0
35	Calciprotein Particle Inhibition Explains Magnesiumâ€mediated Protection against Vascular Calcification. FASEB Journal, 2020, 34, 1-1.	0.2	0
36	Low gut microbiota diversity and dietary magnesium intake are associated with the development of PPlâ€induced hypomagnesemia. FASEB Journal, 2019, 33, 11235-11246.	0.2	32

#	Article	IF	CITATIONS
37	Development of a villi-like micropatterned porous membrane for intestinal magnesium and calcium uptake studies. Acta Biomaterialia, 2019, 99, 110-120.	4.1	10
38	Low extracellular magnesium does not impair glucose-stimulated insulin secretion. PLoS ONE, 2019, 14, e0217925.	1.1	16
39	Renal phospholipidosis and impaired magnesium handling in highâ€fatâ€diet–fed mice. FASEB Journal, 2019, 33, 7192-7201.	0.2	12
40	Effect of Dapagliflozin Treatment on the Expression of Renal Sodium Transporters/Channels on High-Fat Diet Diabetic Mice. Nephron, 2019, 142, 51-60.	0.9	13
41	Diabetes-induced hypomagnesemia is not modulated by metformin treatment in mice. Scientific Reports, 2019, 9, 1770.	1.6	9
42	Magnesium and calciprotein particles in vascular calcification. Current Opinion in Nephrology and Hypertension, 2019, 28, 368-374.	1.0	14
43	SLC41A1 is essential for magnesium homeostasis in vivo. Pflugers Archiv European Journal of Physiology, 2019, 471, 845-860.	1.3	29
44	Increased NEFA levels reduce blood Mg2+ in hypertriacylglycerolaemic states via direct binding of NEFA to Mg2+. Diabetologia, 2019, 62, 311-321.	2.9	14
45	Rebuttal from Francisco J. Arjona and Jeroen H. F. de Baaij. Journal of Physiology, 2018, 596, 753-754.	1.3	4
46	Magnesium prevents vascular calcification in vitro by inhibition of hydroxyapatite crystal formation. Scientific Reports, 2018, 8, 2069.	1.6	82
47	CrossTalk opposing view: CNNM proteins are not Na ⁺ /Mg ²⁺ exchangers but Mg ²⁺ transport regulators playing a central role in transepithelial Mg ²⁺ (re)absorption. Journal of Physiology, 2018, 596, 747-750.	1.3	45
48	Genome-Wide Meta-Analysis Unravels Interactions between Magnesium Homeostasis and Metabolic Phenotypes. Journal of the American Society of Nephrology: JASN, 2018, 29, 335-348.	3.0	34
49	A de novo <i>KCNA1</i> Mutation in a Patient with Tetany and Hypomagnesemia. Nephron, 2018, 139, 359-366.	0.9	22
50	Transcription factor HNF1β regulates expression of the calcium-sensing receptor in the thick ascending limb of the kidney. American Journal of Physiology - Renal Physiology, 2018, 315, F27-F35.	1.3	18
51	Magnesium deficiency prevents high-fat-diet-induced obesity in mice. Diabetologia, 2018, 61, 2030-2042.	2.9	16
52	The rise and fall of novel renal magnesium transporters. American Journal of Physiology - Renal Physiology, 2018, 314, F1027-F1033.	1.3	40
53	Genetic causes of hypomagnesemia, a clinical overview. Pediatric Nephrology, 2017, 32, 1123-1135.	0.9	123
54	Serum magnesium and the risk of prediabetes: a population-based cohort study. Diabetologia, 2017, 60, 843-853.	2.9	68

#	Article	IF	CITATIONS
55	Loss of transcriptional activation of the potassium channel Kir5.1 by HNF1β drives autosomal dominant tubulointerstitial kidney disease. Kidney International, 2017, 92, 1145-1156.	2.6	41
56	Common single nucleotide polymorphisms in transient receptor potential melastatin type 6 increase the risk for proton pump inhibitor-induced hypomagnesemia. Pharmacogenetics and Genomics, 2017, 27, 83-88.	0.7	29
57	Magnesium Counteracts Vascular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1431-1445.	1.1	81
58	Determinants of hypomagnesemia in patients with type 2 diabetes mellitus. European Journal of Endocrinology, 2017, 176, 11-19.	1.9	59
59	Inulin significantly improves serum magnesium levels in proton pump inhibitorâ€induced hypomagnesaemia. Alimentary Pharmacology and Therapeutics, 2016, 43, 1178-1185.	1.9	14
60	Identification of SLC41A3 as a novel player in magnesium homeostasis. Scientific Reports, 2016, 6, 28565.	1.6	50
61	Inhibition of PRL-2·CNNM3 Protein Complex Formation Decreases Breast Cancer Proliferation and Tumor Growth. Journal of Biological Chemistry, 2016, 291, 10716-10725.	1.6	39
62	Regulation of Mg2+ Reabsorption and Transient Receptor Potential Melastatin Type 6 Activity by cAMP Signaling. Journal of the American Society of Nephrology: JASN, 2016, 27, 804-813.	3.0	21
63	Hypomagnesemia in Type 2 Diabetes: A Vicious Circle?. Diabetes, 2016, 65, 3-13.	0.3	217
64	P2X6 Knockout Mice Exhibit Normal Electrolyte Homeostasis. PLoS ONE, 2016, 11, e0156803.	1.1	7
65	The art of magnesium transport. Magnesium Research, 2015, 28, 85-91.	0.4	28
66	Hypomagnesemia as First Clinical Manifestation of ADTKD-HNF1B: A Case Series and Literature Review. American Journal of Nephrology, 2015, 42, 85-90.	1.4	46
67	Flavaglines Stimulate Transient Receptor Potential Melastatin Type 6 (TRPM6) Channel Activity. PLoS ONE, 2015, 10, e0119028.	1.1	13
68	Dietary Inulin Fibers Prevent Proton-Pump Inhibitor (PPI)-Induced Hypocalcemia in Mice. PLoS ONE, 2015, 10, e0138881.	1.1	24
69	Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia. Nephrology Dialysis Transplantation, 2015, 30, 952-957.	0.4	51
70	Magnesium in Man: Implications for Health and Disease. Physiological Reviews, 2015, 95, 1-46.	13.1	1,099
71	CNNM2 Mutations Cause Impaired Brain Development and Seizures in Patients with Hypomagnesemia. PLoS Genetics, 2014, 10, e1004267.	1.5	118
72	P2X4 receptor regulation of transient receptor potential melastatin type 6 (TRPM6) Mg2+ channels. Pflugers Archiv European Journal of Physiology, 2014, 466, 1941-1952.	1.3	27

#	Article	IF	CITATIONS
73	Mutations in PCBD1 Cause Hypomagnesemia and Renal Magnesium Wasting. Journal of the American Society of Nephrology: JASN, 2014, 25, 574-586.	3.0	68
74	PHYSIOLOGY / BASIC. Nephrology Dialysis Transplantation, 2014, 29, iii53-iii53.	0.4	0
75	Phosphate: a novel risk factor for cardiovascular disease and CKD progression. Nephrology Dialysis Transplantation, 2013, 28, i66-i66.	0.4	1
76	Elucidation of the distal convoluted tubule transcriptome identifies new candidate genes involved in renal Mg ²⁺ handling. American Journal of Physiology - Renal Physiology, 2013, 305, F1563-F1573.	1.3	46
77	The Notch pathway attenuates interleukin 1β (IL1β)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) trans-differentiation Journal of Biological Chemistry, 2013, 288, 1278.	1.6	0
78	Regulation of magnesium balance: lessons learned from human genetic disease. CKJ: Clinical Kidney Journal, 2012, 5, i15-i24.	1.4	123
79	The Notch Pathway Attenuates Interleukin 1β (IL1β)-mediated Induction of Adenylyl Cyclase 8 (AC8) Expression during Vascular Smooth Muscle Cell (VSMC) Trans-differentiation. Journal of Biological Chemistry, 2012, 287, 24978-24989.	1.6	20
80	Membrane Topology and Intracellular Processing of Cyclin M2 (CNNM2). Journal of Biological Chemistry, 2012, 287, 13644-13655.	1.6	86
81	153 Regulation of corticosteroid binding globulin (CBG) in the inflammatory context of cystic fibrosis, 2012, 11, S95.	0.3	Ο