
Silvia Alvarez Blanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8316721/publications.pdf Version: 2024-02-01

SILVIA ANADEZ BLANCO

#	Article	IF	CITATIONS
1	Recovery of phenolic compounds from olive oil washing wastewater by adsorption/desorption process. Separation and Purification Technology, 2022, 298, 121562.	7.9	17
2	Exploring the extraction of the bioactive content from the two-phase olive mill waste and further purification by ultrafiltration. LWT - Food Science and Technology, 2022, 165, 113742.	5.2	7
3	Use of ultrafiltration ceramic membranes as a first step treatment for olive oil washing wastewater. Food and Bioproducts Processing, 2022, 135, 60-73.	3.6	7
4	Effect of the operating conditions on a nanofiltration process to separate low-molecular-weight phenolic compounds from the sugars present in olive mill wastewaters. Chemical Engineering Research and Design, 2021, 148, 428-436.	5.6	28
5	Comparison of different ultrafiltration membranes as first step for the recovery of phenolic compounds from olive-oil washing wastewater. Chemical Engineering Research and Design, 2021, 149, 724-734.	5.6	36
6	Integrated Membrane Process for the Treatment and Reuse of Residual Table Olive Fermentation Brine and Anaerobically Digested Sludge Centrate. Membranes, 2020, 10, 253.	3.0	4
7	Ultrafiltration of residual fermentation brines from the production of table olives at different operating conditions. Journal of Cleaner Production, 2018, 189, 662-672.	9.3	15
8	Ultrafiltration of whey: membrane performance and modelling using a combined pore blocking–cake formation model. Journal of Chemical Technology and Biotechnology, 2018, 93, 1891-1900.	3.2	6
9	Evaluation of fouling resistances during the ultrafiltration of whey model solutions. Journal of Cleaner Production, 2018, 172, 358-367.	9.3	36
10	Brine recovery from hypersaline wastewaters from table olive processing by combination of biological treatment and membrane technologies. Journal of Cleaner Production, 2017, 142, 1377-1386.	9.3	18
11	Membrane fouling in whey processing and subsequent cleaning with ultrasounds for a more sustainable process. Journal of Cleaner Production, 2017, 143, 804-813.	9.3	34
12	Valuable Products Recovery from Wastewater in Agrofood by Membrane Processes. Green Chemistry and Sustainable Technology, 2017, , 295-318.	0.7	1
13	Study of membrane cleaning with and without ultrasounds application after fouling with three model dairy solutions. Food and Bioproducts Processing, 2016, 100, 36-46.	3.6	8
14	Experimental determination of nanofiltration models: application to nitrate removal. Desalination and Water Treatment, 2016, 57, 22852-22859.	1.0	5
15	Determination of fouling mechanisms in polymeric ultrafiltration membranes using residual brines from table olive storage wastewaters as feed. Journal of Food Engineering, 2016, 187, 14-23.	5.2	27
16	Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries. Ultrasonics Sonochemistry, 2016, 33, 18-25.	8.2	34
17	Comparison between artificial neural networks and Hermia's models to assess ultrafiltration performance. Separation and Purification Technology, 2016, 170, 434-444.	7.9	51
18	Application of electric fields to clean ultrafiltration membranes fouled with whey model solutions. Separation and Purification Technology, 2016, 159, 92-99.	7.9	22

#	Article	IF	CITATIONS
19	Conventional purification and isolation. , 2015, , 149-172.		3
20	Application of several pretreatment technologies to a wastewater effluent of a petrochemical industry finally treated with reverse osmosis. Desalination and Water Treatment, 2015, 55, 3653-3661.	1.0	6
21	Optimization of chemical cleaning of a reverse osmosis membrane from a desalination plant by means of two-step static tests. Desalination and Water Treatment, 2015, 55, 3367-3379.	1.0	1
22	Fouling mechanisms of ultrafiltration membranes fouled with whey model solutions. Desalination, 2015, 360, 87-96.	8.2	87
23	Utilization of NaCl solutions to clean ultrafiltration membranes fouled by whey protein concentrates. Separation and Purification Technology, 2015, 150, 95-101.	7.9	24
24	Static cleaning tests as the first step to optimize RO membranes cleaning procedure. Desalination and Water Treatment, 2015, 55, 3380-3390.	1.0	7
25	Evaluation of cleaning efficiency of ultrafiltration membranes fouled by BSA using FTIR–ATR as a tool. Journal of Food Engineering, 2015, 163, 1-8.	5.2	54
26	Cleaning of ultrafiltration membranes fouled with BSA by means of saline solutions. Separation and Purification Technology, 2014, 125, 1-10.	7.9	50
27	Salt cleaning of ultrafiltration membranes fouled by whey model solutions. Separation and Purification Technology, 2014, 132, 226-233.	7.9	16
28	Analysis of Two Ultrafiltration Fouling Models and Estimation of Model Parameters as a Function of Operational Conditions. Transport in Porous Media, 2013, 99, 391-411.	2.6	11
29	Microfiltration applied to dairy streams: removal of bacteria. Journal of the Science of Food and Agriculture, 2013, 93, 187-196.	3.5	63
30	Ultrasonic cleaning of ultrafiltration membranes fouled with BSA solution. Separation and Purification Technology, 2013, 120, 275-281.	7.9	41
31	Study of Long Term Fouling in Crossflow Ultrafiltration. Procedia Engineering, 2012, 44, 1670-1673.	1.2	Ο
32	Relationship between Physical and Chemical Characteristics of a Mbr Mixed Liquor: Influence of the EPS on the Filtration Resistance and other Physical Parameters. Procedia Engineering, 2012, 44, 686-688.	1.2	0
33	Influence of the Operating Conditions on the Chemical Cleaning of Ultrafiltration Membranes Fouled with Bsa Solution. Procedia Engineering, 2012, 44, 1940-1942.	1.2	2
34	Evaluation of the Hydraulic Cleaning Efficiency as a Function of the Operating Conditions in the Ultrafiltration of BSA Solutions. Procedia Engineering, 2012, 44, 1741-1743.	1.2	0
35	Analysis of an ultrafiltration model: Influence of operational conditions. Desalination, 2012, 284, 14-21.	8.2	16
36	Analysis of fouling resistances under dynamic membrane filtration. Chemical Engineering and Processing: Process Intensification, 2011, 50, 404-408.	3.6	11

SILVIA ÃŁVAREZ BLANCO

#	Article	IF	CITATIONS
37	Analysis of ultrafiltration processes with dilatant macromolecular solutions by means of dimensionless numbers and hydrodynamic parameters. Separation and Purification Technology, 2010, 75, 332-339.	7.9	10
38	Nanofiltration regeneration of contaminated single-phase detergents used in the dairy industry. Journal of Food Engineering, 2010, 97, 319-328.	5.2	54
39	Application of nanofiltration models for the prediction of lactose retention using three modes of operation. Journal of Food Engineering, 2010, 99, 373-376.	5.2	14
40	Analysis and optimization of the influence of operating conditions in the ultrafiltration of macromolecules using a response surface methodological approach. Chemical Engineering Journal, 2010, 156, 337-346.	12.7	26
41	Prediction of ultrafiltration permeate flux decline by means of a shear induced diffusion model with empirical estimation of the gel layer concentration. Desalination and Water Treatment, 2009, 10, 139-143.	1.0	1
42	Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG. Chemical Engineering Journal, 2009, 149, 232-241.	12.7	123
43	Demineralization of whey and milk ultrafiltration permeate by means of nanofiltration. Desalination, 2009, 241, 272-280.	8.2	34
44	Ultrafiltration permeate flux decline prediction for gel layer forming solutes using monotubular ceramic membranes. Desalination, 2009, 240, 89-93.	8.2	5
45	Linearization of ultrafiltration models: analysis of experimental data from ultrafiltration tests. Desalination and Water Treatment, 2009, 10, 144-147.	1.0	1
46	An approach to theoretical prediction of permeate flux decline in ultrafiltration. Desalination and Water Treatment, 2009, 10, 134-138.	1.0	2
47	Estimation of the gel layer concentration in ultrafiltration: Comparison of different methods. Desalination and Water Treatment, 2009, 3, 157-161.	1.0	5
48	Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Separation and Purification Technology, 2008, 62, 489-498.	7.9	178
49	Influence of feed concentration on the accuracy of permeate flux decline prediction in ultrafiltration. Desalination, 2008, 221, 383-389.	8.2	9
50	Permeate flux decline prediction in the ultrafiltration of macromolecules with empirical estimation of the gel layer concentration. Desalination, 2008, 221, 390-394.	8.2	2
51	Fouling dynamics modelling in the ultrafiltration of PEGs. Desalination, 2008, 222, 451-456.	8.2	11
52	Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination, 2008, 228, 84-96.	8.2	96
53	Modelling of flux decline in crossflow ultrafiltration of macromolecules: comparison between predicted and experimental results. Desalination, 2007, 204, 328-334.	8.2	24
54	Validation of dynamic models to predict flux decline in the ultrafiltration of macromolecules. Desalination, 2007, 204, 344-350.	8.2	7

SILVIA ÃŁVAREZ BLANCO

#	Article	IF	CITATIONS
55	Utilization of a shear induced diffusion model to predict permeate flux in the crossflow ultrafiltration of macromolecules. Desalination, 2007, 206, 61-68.	8.2	14
56	Economic evaluation of an integrated process for lactic acid production from ultrafiltered whey. Journal of Food Engineering, 2007, 80, 553-561.	5.2	80
57	α-Lactalbumin precipitation from commercial whey protein concentrates. Separation and Purification Technology, 2007, 52, 446-453.	7.9	29
58	Nanofiltration of sweet whey and prediction of lactose retention as a function of permeate flux using the Kedem–Spiegler and Donnan Steric Partioning models. Separation and Purification Technology, 2007, 56, 38-46.	7.9	37
59	Purification of Lactic Acid from Fermentation Broths by Ion-Exchange Resins. Industrial & Engineering Chemistry Research, 2006, 45, 3243-3247.	3.7	42
60	Prediction of flux decline in the ultrafiltration of macromolecules. Desalination, 2006, 192, 323-329.	8.2	10
61	Partial demineralization of whey and milk ultrafiltration permeate by nanofiltration at pilot-plant scale. Desalination, 2006, 198, 274-281.	8.2	60
62	Application of a dynamic model for predicting flux decline in crossflow ultrafiltration. Desalination, 2006, 198, 303-309.	8.2	13
63	Utilization of nanofiltration membranes for whey and milk ultrafiltration permeate demineralization. Desalination, 2006, 199, 345-347.	8.2	11
64	Application of a dynamic model that combines pore blocking and cake formation in crossflow ultrafiltration. Desalination, 2006, 200, 138-139.	8.2	9
65	Prediction of solute rejection in nanofiltration processes using different mathematical models. Desalination, 2006, 200, 144-145.	8.2	3
66	Beta-lactoglobulin removal from whey protein concentrates. Separation and Purification Technology, 2006, 52, 310-316.	7.9	39
67	Sunflower oil miscella degumming with polyethersulfone membranes. Journal of Food Engineering, 2006, 74, 516-522.	5.2	45
68	Water and hexane permeate flux through organic and ceramic membranes. Journal of Membrane Science, 2005, 253, 139-147.	8.2	21
69	Crossflow ultrafiltration of cake forming solutes: a non-steady state model. Desalination, 2005, 184, 347-356.	8.2	21
70	Utilization of enzymatic detergents to clean inorganic membranes fouled by whey proteins. Separation and Purification Technology, 2005, 41, 147-154.	7.9	32
71	Plasma-enhanced modification of the pore size of ceramic membranes. Desalination, 2005, 184, 99-104.	8.2	6
72	New potentiomentric dissolved oxygen sensors in thick film technology. Sensors and Actuators B: Chemical, 2004, 101, 295-301.	7.8	46

SILVIA ÃŁVAREZ BLANCO

#	Article	IF	CITATIONS
73	Synthesis of polyaniline using horseradish peroxidase immobilized on plasma-functionalized polyethylene surfaces as initiator. Journal of Applied Polymer Science, 2003, 88, 369-379.	2.6	32
74	Enzymatic cleaning of inorganic ultrafiltration membranes used for whey protein fractionation. Journal of Membrane Science, 2003, 216, 121-134.	8.2	71
75	Production of Low Alcohol Content Apple Cider by Reverse Osmosis. Industrial & Engineering Chemistry Research, 2002, 41, 6600-6606.	3.7	35
76	Concentration of Apple Juice by Reverse Osmosis at Laboratory and Pilot-Plant Scales. Industrial & Engineering Chemistry Research, 2002, 41, 6156-6164.	3.7	33
77	Enzymatic Cleaning of Inorganic Ultrafiltration Membranes Fouled by Whey Proteins. Journal of Agricultural and Food Chemistry, 2002, 50, 1951-1958.	5.2	32
78	Prediction of Flux and Aroma Compounds Rejection in a Reverse Osmosis Concentration of Apple Juice Model Solutions. Industrial & Engineering Chemistry Research, 2001, 40, 4925-4934.	3.7	13
79	A novel plasma-enhanced way for surface-functionalization of polymeric substrates. Polymer Bulletin, 2001, 47, 329-336.	3.3	20
80	A new integrated membrane process for producing clarified apple juice and apple juice aroma concentrate. Journal of Food Engineering, 2000, 46, 109-125.	5.2	139
81	Permeation of apple aroma compounds in reverse osmosis. Separation and Purification Technology, 1998, 14, 209-220.	7.9	34
82	Influence of depectinization on apple juice ultrafiltration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 138, 377-382.	4.7	66
83	Permeate flux prediction in apple juice concentration by reverse osmosis. Journal of Membrane Science, 1997, 127, 25-34.	8.2	54
84	Study of ultrasonically enhanced chemical cleaning of SWRO membranes at pilot plant scale. , 0, 88, 1-7.		2