Suet-Mien Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8316567/publications.pdf

Version: 2024-02-01

		346980	312153
59	1,894	22	41
papers	citations	h-index	g-index
59	59	59	3389
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Emerging evidence for kindlin oligomerization and its role in regulating kindlin function. Journal of Cell Science, $2021,134,.$	1.2	13
2	Binary and ternary complexes of FLNa-lg21 with cytosolic tails of $\hat{l}\pm M\tilde{A}\ddot{\gamma}2$ integrin reveal dual role of filamin mediated regulation. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 130005.	1.1	2
3	The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining α-tubulin acetylation. Journal of Biological Chemistry, 2020, 295, 5928-5943.	1.6	14
4	Structural basis of human full-length kindlin-3 homotrimer in an auto-inhibited state. PLoS Biology, 2020, 18, e3000755.	2.6	26
5	NMR Structure, Dynamics and Interactions of the Integrin \hat{I}^2 2 Cytoplasmic Tail with Filamin Domain IgFLNa21. Scientific Reports, 2018, 8, 5490.	1.6	6
6	The binding interface of kindlinâ€2 and <scp>ILK</scp> involves Asp344/Asp352/Thr356 in kindlinâ€2 and Arg243/Arg334 in <scp>ILK</scp> . FEBS Letters, 2018, 592, 112-121.	1.3	7
7	Interaction Analyses of 14-3-3ζ, Dok1, and Phosphorylated Integrin β Cytoplasmic Tails Reveal a Bi-molecular Switch in Integrin Regulation. Journal of Molecular Biology, 2018, 430, 4419-4430.	2.0	9
8	The Systemic Lupus Erythematosus–Associated Single Nucleotide Polymorphism rs1143678 in Integrin αM Cytoplasmic Tail Generates a 14-3-3ζ Binding Site That Is Proinflammatory. Journal of Immunology, 2017, 198, 883-894.	0.4	6
9	Expression of kindlin-3 in melanoma cells impedes cell migration and metastasis. Cell Adhesion and Migration, 2017, 11, 419-433.	1.1	13
10	NMR Characterization and Membrane Interactions of the Loop Region of Kindlin-3 F1 Subdomain. PLoS ONE, 2016, 11, e0153501.	1.1	11
11	Kindlin-3 interacts with the ribosome and regulates c-Myc expression required for proliferation of chronic myeloid leukemia cells. Scientific Reports, 2016, 5, 18491.	1.6	17
12	Interaction Analyses of the Integrin \hat{I}^2 2 Cytoplasmic Tail with the F3 FERM Domain of Talin and 14-3-3 \hat{I}^{\dagger} Reveal a Ternary Complex with Phosphorylated Tail. Journal of Molecular Biology, 2016, 428, 4129-4142.	2.0	15
13	CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. Journal of Experimental Medicine, 2016, 213, 2293-2314.	4.2	108
14	Function and conformation analyses of an aspartate substitution of the invariant glycine in the integrin \hat{l}^2l domain $\hat{l}\pm 1-\hat{l}\pm 1$ $\hat{a}\in \hat{l}^2$ helix. Biochemistry and Biophysics Reports, 2016, 7, 214-217.	0.7	1
15	Data on cell spread area and directional contraction in human umbilical vein endothelial cells on fibronectin and on collagen type I-coated micro-posts. Data in Brief, 2016, 6, 803-810.	0.5	4
16	Neutrophils Self-Regulate Immune Complex-Mediated Cutaneous Inflammation through CXCL2. Journal of Investigative Dermatology, 2016, 136, 416-424.	0.3	62
17	Crystal structure of Gib2, a signal-transducing protein scaffold associated with ribosomes in Cryptococcus neoformans. Scientific Reports, 2015, 5, 8688.	1.6	11
18	An Alternative Phosphorylation Switch in Integrin β2 (CD18) Tail for Dok1 Binding. Scientific Reports, 2015, 5, 11630.	1.6	15

#	Article	IF	Citations
19	Visualization of bone marrow monocyte mobilization using <i>Cx3cr1gfp/+Flt3Lâ^'/â^'</i> reporter mouse by multiphoton intravital microscopy. Journal of Leukocyte Biology, 2015, 97, 611-619.	1.5	15
20	Characterization of single amino acid substitutions in the \hat{l}^22 integrin subunit of patients with leukocyte adhesion deficiency (LAD)-1. Blood Cells, Molecules, and Diseases, 2015, 54, 177-182.	0.6	12
21	Visualizing the Perturbation of Cellular Cyclic di-GMP Levels in Bacterial Cells. Journal of the American Chemical Society, 2013, 135, 566-569.	6.6	37
22	Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. Journal of Experimental Medicine, 2013, 210, 2321-2336.	4.2	190
23	NMR Structure of Integrin α4 Cytosolic Tail and Its Interactions with Paxillin. PLoS ONE, 2013, 8, e55184.	1.1	8
24	A Role of Kindlin-3 in Integrin $\hat{l}\pm M\hat{l}^22$ Outside-In Signaling and the Syk-Vav1-Rac1/Cdc42 Signaling Axis. PLoS ONE, 2013, 8, e56911.	1.1	29
25	The leucocyte \hat{I}^2 2 (CD18) integrins: the structure, functional regulation and signalling properties. Bioscience Reports, 2012, 32, 241-269.	1.1	140
26	Kindlin-3 Mediates Integrin $\hat{l}\pm L\hat{l}^2$ 2 Outside-in Signaling, and It Interacts with Scaffold Protein Receptor for Activated-C Kinase 1 (RACK1). Journal of Biological Chemistry, 2012, 287, 10714-10726.	1.6	63
27	Structure of human Rack1 protein at a resolution of 2.45â€Ã Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 867-872.	0.7	35
28	Structure and Binding Interface of the Cytosolic Tails of $\hat{l}\pm X\hat{l}^2$ 2 Integrin. PLoS ONE, 2012, 7, e41924.	1.1	12
29	KHYG-1 and NK-92 represent different subtypes of LFA-1-mediated NK cell adhesiveness. Frontiers in Bioscience - Elite, 2011, E3, 166-178.	0.9	5
30	ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood, 2011, 118, 3990-4002.	0.6	203
31	Leukocyte integrin αLβ2 transmembrane association dynamics revealed by coarseâ€grained molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2203-2213.	1.5	22
32	Structures and Interaction Analyses of Integrin $\hat{l}\pm M\hat{l}^22$ Cytoplasmic Tails*. Journal of Biological Chemistry, 2011, 286, 43842-43854.	1.6	18
33	Integrin αMβ2 Clustering Triggers Phosphorylation and Activation of Protein Kinase Cδthat Regulates Transcription Factor Foxp1 Expression in Monocytes. Journal of Immunology, 2010, 184, 3697-3709.	0.4	33
34	A Transmembrane Polar Interaction Is Involved in the Functional Regulation of Integrin $\hat{l}\pm L\hat{l}^22$. Journal of Molecular Biology, 2010, 398, 569-583.	2.0	13
35	Functional and structural characterization of the talin FOF1 domain. Biochemical and Biophysical Research Communications, 2010, 391, 159-165.	1.0	3
36	Angiopoietin-Like 4 Interacts with Integrins \hat{l}^21 and \hat{l}^25 to Modulate Keratinocyte Migration. American Journal of Pathology, 2010, 177, 2791-2803.	1.9	105

#	Article	IF	CITATIONS
37	Disruption of the Integrin $\hat{l}\pm\hat{L}^22$ Transmembrane Domain Interface by \hat{l}^22 Thr-686 Mutation Activates $\hat{l}\pm\hat{L}^22$ and Promotes Micro-clustering of the $\hat{l}\pm\hat{L}$ Subunits. Journal of Biological Chemistry, 2009, 284, 3239-3249.	1.6	18
38	NMR Solution Conformations and Interactions of Integrin $\hat{l}_{\pm}L\hat{l}^2$ 2 Cytoplasmic Tails. Journal of Biological Chemistry, 2009, 284, 3873-3884.	1.6	31
39	Transmembrane helices that form two opposite homodimeric interactions: An asparagine scan study of $\hat{l}\pm M$ and $\hat{l}^2 2$ integrins. Protein Science, 2008, 17, 930-938.	3.1	14
40	Permissive transmembrane helix heterodimerization is required for the expression of a functional integrin. Biochemical Journal, 2008, 410, 495-502.	1.7	15
41	Intercellular Adhesion Molecule-3 Binding of Integrin $\hat{l}\pm\hat{L}\hat{l}^22$ Requires Both Extension and Opening of the Integrin Headpiece. Journal of Immunology, 2008, 180, 4793-4804.	0.4	23
42	Urokinase-type Plasminogen Activator Receptor Induces Conformational Changes in the Integrin $\hat{l}\pm M\hat{l}^22$ Headpiece and Reorientation of Its Transmembrane Domains. Journal of Biological Chemistry, 2008, 283, 25392-25403.	1.6	18
43	Chapter 13. Cell Surface Integrins. , 2008, , 195-215.		1
44	A Structural Hypothesis for the Transition between Bent and Extended Conformations of the Leukocyte Î ² 2 Integrins. Journal of Biological Chemistry, 2007, 282, 30198-30206.	1.6	43
45	Mutation of a Conserved Asparagine in the I-like Domain Promotes Constitutively Active Integrins αLÎ ² 2 and αIIbÎ ² 3. Journal of Biological Chemistry, 2007, 282, 18225-18232.	1.6	31
46	The Cytosolic Protein Talin Induces an Intermediate Affinity Integrin $\hat{l}\pm L\hat{l}^22$. Journal of Biological Chemistry, 2007, 282, 24310-24319.	1.6	30
47	Selective recruitment of src family kinase Hck by leukocyte integrin αMβ2but not αLβ2or αXβ2. FEBS Letters, 2006, 580, 4435-4442.	1.3	12
48	Down-regulation of integrin $\hat{l}\pm M\hat{l}^22$ ligand-binding function by the urokinase-type plasminogen activator receptor. Biochemical and Biophysical Research Communications, 2006, 348, 1184-1193.	1.0	9
49	Two types of transmembrane homomeric interactions in the integrin receptor family are evolutionarily conserved. Proteins: Structure, Function and Bioinformatics, 2006, 63, 16-23.	1.5	22
50	Unambiguous prediction of human integrin transmembrane heterodimer interactions using only homologous sequences. Proteins: Structure, Function and Bioinformatics, 2006, 65, 274-279.	1.5	15
51	Integrin CD11a cytoplasmic tail interacts with the CD45 membrane-proximal protein tyrosine phosphatase domain 1. Immunology, 2005, 115, 347-357.	2.0	10
52	Epitope Mapping of Monoclonal Antibody to Integrin $\hat{l}\pm L\hat{l}^22$ Hybrid Domain Suggests Different Requirements of Affinity States for Intercellular Adhesion Molecules (ICAM)-1 and ICAM-3 Binding. Journal of Biological Chemistry, 2005, 280, 29208-29216.	1.6	45
53	The Crystal Structure of the Plexin-Semaphorin-Integrin Domain/Hybrid Domain/I-EGF1 Segment from the Human Integrin \hat{I}^2 2 Subunit at 1.8- \hat{A} Resolution. Journal of Biological Chemistry, 2005, 280, 30586-30593.	1.6	38
54	Differential activation of LFA-1 and Mac-1 ligand binding domains. Biochemical and Biophysical Research Communications, 2005, 337, 142-148.	1.0	7

SUET-MIEN TAN

#	Article	IF	CITATIONS
55	The Integrin $\hat{l}\pm L\hat{l}^2$ 2 Hybrid Domain Serves as a Link for the Propagation of Activation Signal from Its Stalk Regions to the I-like Domain. Journal of Biological Chemistry, 2004, 279, 54334-54339.	1.6	25
56	Defining the repeating elements in the cysteine-rich region (CRR) of the CD18 integrin \hat{l}^22 subunit. FEBS Letters, 2001, 505, 27-30.	1.3	17
57	The N-terminal Region and the Mid-region Complex of the Integrin \hat{l}^22 Subunit. Journal of Biological Chemistry, 2001, 276, 36370-36376.	1.6	22
58	Effect of Integrin \hat{I}^2 2 Subunit Truncations on LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) Assembly, Surface Expression, and Function. Journal of Immunology, 2000, 165, 2574-2581.	0.4	64
59	Improvements on the purification of mannan-binding lectin and demonstration of its Ca2+-independent association with a C1s-like serine protease. Biochemical Journal, 1996, 319, 329-332.	1.7	101