List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8316438/publications.pdf Version: 2024-02-01

Διι Μιρασιμι

#	Article	IF	CITATIONS
1	Nucleoside-Modified mRNA Vaccines Protect IFNAR ^{–/–} Mice against Crimean-Congo Hemorrhagic Fever Virus Infection. Journal of Virology, 2022, 96, JVI0156821.	3.4	24
2	ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFNÎ ³ -driven immunopathology. ELife, 2022, 11, .	6.0	42
3	Cynarin blocks Ebola virus replication by counteracting VP35 inhibition of interferon-beta production. Antiviral Research, 2022, 198, 105251.	4.1	9
4	Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes. Pathogens, 2022, 11, 271.	2.8	31
5	Multi-omics insights into host-viral response and pathogenesis in Crimean-Congo hemorrhagic fever viruses for novel therapeutic target. ELife, 2022, 11, .	6.0	12
6	A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells. Cell Metabolism, 2022, 34, 857-873.e9.	16.2	40
7	Clinical grade <scp>ACE2</scp> as a universal agent to block <scp>SARS oV</scp> â€2 variants. EMBO Molecular Medicine, 2022, 14, .	6.9	35
8	A DNA-based vaccine protects against Crimean-Congo haemorrhagic fever virus disease in a Cynomolgus macaque model. Nature Microbiology, 2021, 6, 187-195.	13.3	49
9	JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Science Advances, 2021, 7, .	10.3	176
10	Experimental Challenge of Sheep and Cattle with Dugbe Orthonairovirus, a Neglected African Arbovirus Distantly Related to CCHFV. Viruses, 2021, 13, 372.	3.3	8
11	Generation of enzymatically competent SARS oVâ€2 decoy receptor ACE2â€Fc in glycoengineered <i>Nicotiana benthamiana</i> . Biotechnology Journal, 2021, 16, e2000566.	3.5	26
12	Serological and molecular study of Crimean-Congo Hemorrhagic Fever Virus in cattle from selected districts in Uganda. Journal of Virological Methods, 2021, 290, 114075.	2.1	28
13	A super-potent tetramerized ACE2 protein displays enhanced neutralization of SARS-CoV-2 virus infection. Scientific Reports, 2021, 11, 10617.	3.3	28
14	Type-I interferon signatures in SARS-CoV-2 infected Huh7 cells. Cell Death Discovery, 2021, 7, 114.	4.7	23
15	Cell-type-resolved quantitative proteomics map of interferon response against SARS-CoV-2. IScience, 2021, 24, 102420.	4.1	50
16	Diagnosis and Pathogenesis of Nairobi Sheep Disease Orthonairovirus Infections in Sheep and Cattle. Viruses, 2021, 13, 1250.	3.3	8
17	latrogenic immunosuppression can lead to prolonged viral shedding and absent immune response to COVIDâ€19. Acta Paediatrica, International Journal of Paediatrics, 2021, 110, 2810-2811.	1.5	1
18	The New Generation hDHODH Inhibitor MEDS433 Hinders the In Vitro Replication of SARS-CoV-2 and Other Human Coronaviruses. Microorganisms, 2021, 9, 1731.	3.6	16

#	Article	IF	CITATIONS
19	Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell, 2021, 28, 1362-1379.e7.	11.1	67
20	Cranberry (Vaccinium macrocarpon) Extract Impairs Nairovirus Infection by Inhibiting the Attachment to Target Cells. Pathogens, 2021, 10, 1025.	2.8	4
21	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
22	Presence of antibodies to Crimean Congo haemorrhagic fever virus in sheep in Tunisia, North Africa. Veterinary Medicine and Science, 2021, 7, 2323-2329.	1.6	6
23	Identification of lectin receptors for conserved SARS oVâ€2 glycosylation sites. EMBO Journal, 2021, 40, e108375.	7.8	44
24	Human soluble ACE2 improves the effect of remdesivir in SARS oVâ€2 infection. EMBO Molecular Medicine, 2021, 13, e13426.	6.9	87
25	Broadly Active Antiviral Compounds Disturb Zika Virus Progeny Release Rescuing Virus-Induced Toxicity in Brain Organoids. Viruses, 2021, 13, 37.	3.3	15
26	Virus-Derived DNA Forms Mediate the Persistent Infection of Tick Cells by Hazara Virus and Crimean-Congo Hemorrhagic Fever Virus. Journal of Virology, 2021, 95, e0163821.	3.4	7
27	Structure-guided glyco-engineering of ACE2 for improved potency as soluble SARS-CoV-2 decoy receptor. ELife, 2021, 10, .	6.0	29
28	Digital Rolling Circle Amplification–Based Detection of Ebola and Other Tropical Viruses. Journal of Molecular Diagnostics, 2020, 22, 272-283.	2.8	30
29	Comparison of Zaire ebolavirus realtime RT-PCRs targeting the nucleoprotein gene. Journal of Virological Methods, 2020, 284, 113941.	2.1	2
30	Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerging Microbes and Infections, 2020, 9, 1748-1760.	6.5	221
31	The SARS-CoV-2 N Protein Is a Good Component in a Vaccine. Journal of Virology, 2020, 94, .	3.4	35
32	In silico and in vitro studies reveal complement system drives coagulation cascade in SARS-CoV-2 pathogenesis. Computational and Structural Biotechnology Journal, 2020, 18, 3734-3744.	4.1	22
33	Human recombinant soluble ACE2 in severe COVID-19. Lancet Respiratory Medicine,the, 2020, 8, 1154-1158.	10.7	340
34	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
35	Sheep and Cattle Are Not Susceptible to Experimental Inoculation with Hazara Orthonairovirus, a Tick-Borne Arbovirus Closely Related to CCHFV. Microorganisms, 2020, 8, 1927.	3.6	8
36	Novel Broad-Spectrum Antiviral Inhibitors Targeting Host Factors Essential for Replication of Pathogenic RNA Viruses. Viruses, 2020, 12, 1423.	3.3	22

#	Article	IF	CITATIONS
37	Development of a Multivalent Kunjin Virus Reporter Virus-Like Particle System Inducing Seroconversion for Ebola and West Nile Virus Proteins in Mice. Microorganisms, 2020, 8, 1890.	3.6	4
38	Mechanism of baricitinib supports artificial intelligenceâ€predicted testing in <scp>COVID</scp> â€19 patients. EMBO Molecular Medicine, 2020, 12, e12697.	6.9	229
39	Development and Potential Usefulness of the COVID-19 Ag Respi-Strip Diagnostic Assay in a Pandemic Context. Frontiers in Medicine, 2020, 7, 225.	2.6	171
40	Identification and validation of internal reference genes for real-time quantitative polymerase chain reaction-based studies in Hyalomma anatolicum ticks. Ticks and Tick-borne Diseases, 2020, 11, 101417.	2.7	4
41	Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell, 2020, 181, 905-913.e7.	28.9	1,827
42	ICTV Virus Taxonomy Profile: Nairoviridae. Journal of General Virology, 2020, 101, 798-799.	2.9	56
43	ISG15 overexpression compensates the defect of Crimean-Congo hemorrhagic fever virus polymerase bearing a protease-inactive ovarian tumor domain. PLoS Neglected Tropical Diseases, 2020, 14, e0008610.	3.0	5
44	Hazara virus and Crimean-Congo Hemorrhagic Fever Virus show a different pattern of entry in fully-polarized Caco-2 cell line. PLoS Neglected Tropical Diseases, 2020, 14, e0008863.	3.0	5
45	Monoclonal antibodies for the S2 subunit of spike of SARS-CoV-1 cross-react with the newly-emerged SARS-CoV-2. Eurosurveillance, 2020, 25, .	7.0	69
46	Geographical Variability Affects CCHFV Detection by RT–PCR: A Tool for In-Silico Evaluation of Molecular Assays. Viruses, 2019, 11, 953.	3.3	10
47	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	2.1	115
48	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
49	Bombali Virus in <i>Mops condylurus</i> Bat, Kenya. Emerging Infectious Diseases, 2019, 25, 955-957.	4.3	79
50	Viral Hemorrhagic Fevers Other than Ebola and Lassa. Infectious Disease Clinics of North America, 2019, 33, 977-1002.	5.1	32
51	Laboratory management of Crimean-Congo haemorrhagic fever virus infections: perspectives from two European networks. Eurosurveillance, 2019, 24, .	7.0	27
52	A one-step multiplex real-time RT-PCR for the universal detection of all currently known CCHFV genotypes. Journal of Virological Methods, 2018, 255, 38-43.	2.1	19
53	The DEVD motif of Crimean-Congo hemorrhagic fever virus nucleoprotein is essential for viral replication in tick cells. Emerging Microbes and Infections, 2018, 7, 1-5.	6.5	6
54	Emerging Mosquito-Borne Threats and the Response from European and Eastern Mediterranean Countries. International Journal of Environmental Research and Public Health, 2018, 15, 2775.	2.6	45

#	Article	IF	CITATIONS
55	Overexpression of the nucleocapsid protein of Middle East respiratory syndrome coronavirus up-regulates CXCL10. Bioscience Reports, 2018, 38, .	2.4	15
56	Epitope-mapping of the glycoprotein from Crimean-Congo hemorrhagic fever virus using a microarray approach. PLoS Neglected Tropical Diseases, 2018, 12, e0006598.	3.0	22
57	Immunization with DNA Plasmids Coding for Crimean-Congo Hemorrhagic Fever Virus Capsid and Envelope Proteins and/or Virus-Like Particles Induces Protection and Survival in Challenged Mice. Journal of Virology, 2017, 91, .	3.4	73
58	Production, purification and immunogenicity of recombinant Ebola virus proteins â^' A comparison of Freund's adjuvant and adjuvant system 03. Journal of Virological Methods, 2017, 242, 35-45.	2.1	15
59	Perturbation of Wound Healing, Cytoskeletal Organization and Cellular Protein Networks during Hazara Virus Infection. Frontiers in Cell and Developmental Biology, 2017, 5, 98.	3.7	11
60	Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions. Frontiers in Cellular and Infection Microbiology, 2017, 7, 213.	3.9	56
61	Rapid Bedside Inactivation of Ebola Virus for Safe Nucleic Acid Tests. Journal of Clinical Microbiology, 2016, 54, 2521-2529.	3.9	21
62	The Non-structural Protein of Crimean-Congo Hemorrhagic Fever Virus Disrupts the Mitochondrial Membrane Potential and Induces Apoptosis. Journal of Biological Chemistry, 2016, 291, 582-592.	3.4	61
63	Protective role of host aquaporin 6 against Hazara virus, a model for Crimean–Congo hemorrhagic fever virus infection. FEMS Microbiology Letters, 2016, 363, fnw058.	1.8	17
64	Amiodarone increases positive-strand RNA virus replication <i>in vitro</i> : implications for its use in patients with viral infections: Table 1 Journal of Antimicrobial Chemotherapy, 2016, 71, 280-281.	3.0	3
65	Biosafety standards for working with Crimean-Congo hemorrhagic fever virus. Journal of General Virology, 2016, 97, 2799-2808.	2.9	39
66	Ebola virus disease: societal challenges and new treatments. Journal of Internal Medicine, 2015, 278, 227-237.	6.0	6
67	Amiodarone and metabolite MDEA inhibit Ebola virus infection by interfering with the viral entry process. Pathogens and Disease, 2015, 73, .	2.0	48
68	Molecular and serological findings in suspected patients with Crimean ongo hemorrhagic fever virus in Iran. Journal of Medical Virology, 2015, 87, 686-693.	5.0	1
69	Fiber-Optic Immunosensor for Detection of Crimean-Congo Hemorrhagic Fever IgG Antibodies in Patients. Analytical Chemistry, 2015, 87, 8394-8398.	6.5	34
70	Crimean–Congo haemorrhagic fever replication interplays with regulation mechanisms of apoptosis. Journal of General Virology, 2015, 96, 538-546.	2.9	19
71	A Virus-Like Particle System Identifies the Endonuclease Domain of Crimean-Congo Hemorrhagic Fever Virus. Journal of Virology, 2015, 89, 5957-5967.	3.4	54
72	Recent advances in research on Crimean-Congo hemorrhagic fever. Journal of Clinical Virology, 2015, 64, 137-143.	3.1	65

#	Article	IF	CITATIONS
73	Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015. Eurosurveillance, 2015, 20, .	7.0	86
74	The Microbial Detection Array for Detection of Emerging Viruses in Clinical Samples - A Useful Panmicrobial Diagnostic Tool. PLoS ONE, 2014, 9, e100813.	2.5	31
75	Crimean-Congo Hemorrhagic Fever Virus, Greece. Emerging Infectious Diseases, 2014, 20, 288-290.	4.3	28
76	Development and Evaluation of a Real-Time RT-qPCR for Detection of Crimean-Congo Hemorrhagic Fever Virus Representing Different Genotypes. Vector-Borne and Zoonotic Diseases, 2014, 14, 870-872.	1.5	14
77	Biosafety Level-4 Laboratories in Europe: Opportunities for Public Health, Diagnostics, and Research. PLoS Pathogens, 2013, 9, e1003105.	4.7	19
78	Laboratory Biosafety in Containment Laboratories. , 2013, , 5-12.		1
79	First International External Quality Assessment of Molecular Detection of Crimean-Congo Hemorrhagic Fever Virus. PLoS Neglected Tropical Diseases, 2012, 6, e1706.	3.0	30
80	Healthy individuals' immune response to the Bulgarian Crimean-Congo hemorrhagic fever virus vaccine. Vaccine, 2012, 30, 6225-6229.	3.8	68
81	Structure of Crimean-Congo Hemorrhagic Fever Virus Nucleoprotein: Superhelical Homo-Oligomers and the Role of Caspase-3 Cleavage. Journal of Virology, 2012, 86, 12294-12303.	3.4	71
82	Diagnostic Assays for Crimean-Congo Hemorrhagic Fever. Emerging Infectious Diseases, 2012, 18, 1958-1965.	4.3	66
83	In situ rolling circle amplification detection of Crimean Congo hemorrhagic fever virus (CCHFV) complementary and viral RNA. Virology, 2012, 426, 87-92.	2.4	14
84	SARS-CoV 9b Protein Diffuses into Nucleus, Undergoes Active Crm1 Mediated Nucleocytoplasmic Export and Triggers Apoptosis When Retained in the Nucleus. PLoS ONE, 2011, 6, e19436.	2.5	37
85	Quantitative analysis of particles, genomes and infectious particles in supernatants of haemorrhagic fever virus cell cultures. Virology Journal, 2011, 8, 81.	3.4	50
86	A putative diacidic motif in the SARS-CoV ORF6 protein influences its subcellular localization and suppression of expression of co-transfected expression constructs. BMC Research Notes, 2011, 4, 446.	1.4	26
87	SARS coronavirus 8b reduces viral replication by down-regulating E via an ubiquitin-independent proteasome pathway. Microbes and Infection, 2011, 13, 179-188.	1.9	16
88	Crimean-Congo Hemorrhagic Fever Virus Activates Endothelial Cells. Journal of Virology, 2011, 85, 7766-7774.	3.4	65
89	Induction of Caspase Activation and Cleavage of the Viral Nucleocapsid Protein in Different Cell Types during Crimean-Congo Hemorrhagic Fever Virus Infection. Journal of Biological Chemistry, 2011, 286, 3227-3234.	3.4	57
90	Colorimetric Nucleic Acid Testing Assay for RNA Virus Detection Based on Circle-to-Circle Amplification of Padlock Probes. Journal of Clinical Microbiology, 2011, 49, 4279-4285.	3.9	33

#	Article	IF	CITATIONS
91	A new panel of NS1 antibodies for easy detection and titration of influenza A virus. Journal of Medical Virology, 2010, 82, 467-475.	5.0	15
92	Towards an understanding of the migration of Crimean-Congo hemorrhagic fever virus. Journal of General Virology, 2010, 91, 199-207.	2.9	76
93	Crimean-Congo hemorrhagic fever virus infection is lethal for adult type I interferon receptor-knockout mice. Journal of General Virology, 2010, 91, 1473-1477.	2.9	131
94	An Antibody against a Novel and Conserved Epitope in the Hemagglutinin 1 Subunit Neutralizes Numerous H5N1 Influenza Viruses. Journal of Virology, 2010, 84, 8275-8286.	3.4	64
95	Molecular biology and pathogenesis of Crimean–Congo hemorrhagic fever virus. Future Virology, 2010, 5, 469-479.	1.8	12
96	Crimean-Congo hemorrhagic fever virus entry and replication is clathrin-, pH- and cholesterol-dependent. Journal of General Virology, 2009, 90, 210-215.	2.9	75
97	European Perspective of 2-Person Rule for Biosafety Level 4 Laboratories. Emerging Infectious Diseases, 2009, 15, 1858a-1860.	4.3	3
98	Microtubule-dependent and microtubule-independent steps in Crimean-Congo hemorrhagic fever virus replication cycle. Virology, 2009, 385, 313-322.	2.4	38
99	Crimean Congo hemorrhagic fever virus infects human monocyte-derived dendritic cells. Virology, 2009, 390, 157-162.	2.4	60
100	Dual effect of nitric oxide on SARS-CoV replication: Viral RNA production and palmitoylation of the S protein are affected. Virology, 2009, 395, 1-9.	2.4	194
101	Networking for BSL-3/4 laboratory scientist training. Nature Reviews Microbiology, 2009, 7, 756-756.	28.6	3
102	Crimean ongo hemorrhagic fever virus delays activation of the innate immune response. Journal of Medical Virology, 2008, 80, 1397-1404.	5.0	62
103	Interferon and cytokine responses to Crimean Congo hemorrhagic fever virus; an emerging and neglected viral zonoosis. Cytokine and Growth Factor Reviews, 2008, 19, 395-404.	7.2	84
104	Processing of Genome 5′ Termini as a Strategy of Negative-Strand RNA Viruses to Avoid RIG-I-Dependent Interferon Induction. PLoS ONE, 2008, 3, e2032.	2.5	260
105	Basolateral Entry and Release of Crimean-Congo Hemorrhagic Fever Virus in Polarized MDCK-1 Cells. Journal of Virology, 2007, 81, 2158-2164.	3.4	37
106	Inhibition of SARS-CoV replication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S. Antiviral Research, 2007, 73, 219-227.	4.1	58
107	Treatment of Crimean-Congo Hemorrhagic Fever. , 2007, , 245-269.		3
108	Amino acids 15-28 in the ectodomain of SARS coronavirus 3a protein induces neutralizing antibodies. FEBS Letters, 2006, 580, 3799-3803.	2.8	28

#	Article	IF	CITATIONS
109	Nitric oxide and peroxynitrite have different antiviral effects against hantavirus replication and free mature virions. European Journal of Immunology, 2006, 36, 2649-2657.	2.9	53
110	Type I interferon inhibits Crimean-Congo hemorrhagic fever virus in human target cells. Journal of Medical Virology, 2006, 78, 216-222.	5.0	58
111	Nitric Oxide Inhibits the Replication Cycle of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2005, 79, 1966-1969.	3.4	292
112	Human MxA Protein Inhibits the Replication of Crimean-Congo Hemorrhagic Fever Virus. Journal of Virology, 2004, 78, 4323-4329.	3.4	110
113	Role of actin filaments in targeting of Crimean Congo hemorrhagic fever virus nucleocapsid protein to perinuclear regions of mammalian cells. Journal of Medical Virology, 2004, 72, 83-93.	5.0	52
114	Genetic analysis of crimean-congo hemorrhagic fever virus in Iran. Journal of Medical Virology, 2004, 73, 404-411.	5.0	78
115	A cytoplasmic region of the NSP4 enterotoxin of rotavirus is involved in retention in the endoplasmic reticulum. Journal of General Virology, 2003, 84, 875-883.	2.9	11
116	ATP Is Required for Correct Folding and Disulfide Bond Formation of Rotavirus VP7. Journal of Virology, 2000, 74, 8048-8052.	3.4	24
117	Free thiol groups are essential for infectivity of human cytomegalovirus. Journal of General Virology, 1999, 80, 2861-2865.	2.9	15
118	Encapsulation of rotavirus into poly(lactide-co-glycolide) microspheres. Journal of Controlled Release, 1999, 59, 377-389.	9.9	41
119	The Molecular Chaperone Calnexin Interacts with the NSP4 Enterotoxin of Rotavirus In Vivo and In Vitro. Journal of Virology, 1998, 72, 8705-8709.	3.4	42
120	Carbohydrates Facilitate Correct Disulfide Bond Formation and Folding of Rotavirus VP7. Journal of Virology, 1998, 72, 3887-3892.	3.4	37
121	Effect of Brefeldin A on Rotavirus Assembly and Oligosaccharide Processing. Virology, 1996, 217, 554-563.	2.4	45