Silvia Bordiga

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8316345/silvia-bordiga-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 484
papers
 42,279
citations
 108
h-index
 190
g-index

 513
ext. papers
 46,156
ext. citations
 7
avg, IF
 7.17
L-index

#	Paper	IF	Citations
484	MAPO-18 Catalysts for the Methanol to Olefins Process: Influence of Catalyst Acidity in a High-Pressure Syngas (CO and H) Environment <i>ACS Catalysis</i> , 2022 , 12, 1520-1531	13.1	2
483	Thermochromic photoluminescent 3D printed polymeric devices based on copper-iodide clusters. <i>Additive Manufacturing</i> , 2022 , 49, 102504	6.1	О
482	Supported PdZn nanoparticles for selective CO2 conversion, through the grafting of a heterobimetallic complex on CeZrOx. <i>Applied Catalysis A: General</i> , 2022 , 635, 118568	5.1	1
481	Characterization of the NiSO4 site on a NiSO4-ReOx/EAl2O3 catalyst for tandem conversion of ethylene to propylene. <i>Applied Catalysis A: General</i> , 2022 , 637, 118598	5.1	O
480	SO Poisoning of Cu-CHA deNO Catalyst: The Most Vulnerable Cu Species Identified by X-ray Absorption Spectroscopy <i>Jacs Au</i> , 2022 , 2, 787-792		O
479	Efficient and reversible CO2 capture in bio-based ionic liquids solutions. <i>Journal of CO2 Utilization</i> , 2021 , 55, 101815	7.6	2
478	Titelbild: Experimental and Theoretical Evidence for the Promotional Effect of Acid Sites on the Diffusion of Alkenes through Small-Pore Zeolites (Angew. Chem. 18/2021). <i>Angewandte Chemie</i> , 2021 , 133, 9813-9813	3.6	
477	Experimental and Theoretical Evidence for the Promotional Effect of Acid Sites on the Diffusion of Alkenes through Small-Pore Zeolites. <i>Angewandte Chemie</i> , 2021 , 133, 10104-10110	3.6	3
476	Experimental and Theoretical Evidence for the Promotional Effect of Acid Sites on the Diffusion of Alkenes through Small-Pore Zeolites. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10016-10022	16.4	10
475	Metal Drganic Frameworks in Italy: From synthesis and advanced characterization to theoretical modeling and applications. <i>Coordination Chemistry Reviews</i> , 2021 , 437, 213861	23.2	5
474	Co-catalyst free ethene dimerization over Zr-based metal-organic framework (UiO-67) functionalized with Ni and bipyridine. <i>Catalysis Today</i> , 2021 , 369, 193-202	5.3	9
473	Influence of Cu-speciation in mordenite on direct methane to methanol conversion: Multi-Technique characterization and comparison with NH3 selective catalytic reduction of NOx. <i>Catalysis Today</i> , 2021 , 369, 105-111	5.3	3
472	Functional Dyes in Polymeric 3D Printing: Applications and Perspectives 2021 , 3, 1-17		18
471	Cu- and Fe-speciation in a composite zeolite catalyst for selective catalytic reduction of NOx: insights from operando XAS. <i>Catalysis Science and Technology</i> , 2021 , 11, 846-860	5.5	4
470	Finding the active species: The conversion of methanol to aromatics over Zn-ZSM-5/alumina shaped catalysts. <i>Journal of Catalysis</i> , 2021 , 394, 416-428	7.3	13
469	CO2 hydrogenation to methanol and hydrocarbons over bifunctional Zn-doped ZrO2/zeolite catalysts. <i>Catalysis Science and Technology</i> , 2021 , 11, 1249-1268	5.5	8
468	Multifunctional Catalyst Combination for the Direct Conversion of CO to Propane. <i>Jacs Au</i> , 2021 , 1, 171	9-1732	2 5

(2020-2021)

Insights on a Hierarchical MFI Zeolite: A Combined Spectroscopic and Catalytic Approach for Exploring the Multilevel Porous System Down to the Active Sites. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 49114-49127	9.5	1	
Copper Pairing in the Mordenite Framework as a Function of the Cu /Cu Speciation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25891-25896	16.4	2	
Investigating the role of Cu-oxo species in Cu-nitrate formation over Cu-CHA catalysts. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 18322-18337	3.6	3	
In situ X-ray absorption study of Cu species in Cu-CHA catalysts for NH3-SCR during temperature-programmed reduction in NO/NH3. <i>Research on Chemical Intermediates</i> , 2021 , 47, 357-375	2.8	3	
EXAFS wavelet transform analysis of Cu-MOR zeolites for the direct methane to methanol conversion. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 18950-18963	3.6	23	
On the conversion of CO2 to value added products over composite PdZn and H-ZSM-5 catalysts: excess Zn over Pd, a compromise or a penalty?. <i>Catalysis Science and Technology</i> , 2020 , 10, 4373-4385	5.5	9	
Titanium Defective Sites in TS-1: Structural Insights by Combining Spectroscopy and Simulation. Angewandte Chemie, 2020 , 132, 18302-18307	3.6		
Titanium Defective Sites in TS-1: Structural Insights by Combining Spectroscopy and Simulation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18145-18150	16.4	6	
Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol. <i>Catalysts</i> , 2020 , 10, 191	4	9	
Revisiting the identity of EMgCl2: Part II. Morphology and exposed surfaces studied by vibrational spectroscopies and DFT calculation. <i>Journal of Catalysis</i> , 2020 , 387, 1-11	7.3	15	
A temporal analysis of products (TAP) study of C2-C4 alkene reactions with a well-defined pool of methylating species on ZSM-22 zeolite. <i>Journal of Catalysis</i> , 2020 , 385, 300-312	7.3	11	
Bimetallic hexanuclear clusters in Ce/Zr-UiO-66 MOFs: in situ FTIR spectroscopy and modelling insights. <i>Dalton Transactions</i> , 2020 , 49, 5794-5797	4.3	7	
Adsorption Properties of Ce5(BDC)7.5(DMF)4 MOF. <i>Inorganics</i> , 2020 , 8, 9	2.9	9	
UiO-66 type MOFs with mixed-linkers - 1,4-Benzenedicarboxylate and 1,4-naphthalenedicarboxylate: Effect of the modulator and post-synthetic exchange. <i>Microporous and Mesoporous Materials</i> , 2020 , 305, 110324	5.3	14	
A spectroscopic and computational study of a tough MOF with a fragile linker: Ce-UiO-66-ADC. <i>Dalton Transactions</i> , 2020 , 49, 12-16	4.3	9	
Hydrogenation of CO to Methanol by Pt Nanoparticles Encapsulated in UiO-67: Deciphering the Role of the Metal-Organic Framework. <i>Journal of the American Chemical Society</i> , 2020 , 142, 999-1009	16.4	72	
Location and activity of VOx species on TiO2 particles for NH3-SCR catalysis. <i>Applied Catalysis B: Environmental</i> , 2020 , 278, 119337	21.8	18	
Visible-Light-Driven Photocatalytic Coupling of Benzylamine over Titanium-Based MIL-125-NH2 Metal © rganic Framework: A Mechanistic Study. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 23707-23715	3.8	8	
	Exploring the Multilevel Porous System Down to the Active Sites. ACS Applied Materials & Down Interfaces, 2021, 13, 49114-49127 Interfaces, 2021, 13, 49114-49127 Copper Pairing in the Mordenite Framework as a Function of the Cu /Cu Speciation. Angewandte Chemie - International Edition, 2021, 60, 25891-25896 Investigating the role of Cu-oxo species in Cu-chirrate formation over Cu-CHA catalysts. Physical Chemistry Chemical Physics, 2021, 23, 18322-18337 In situ X-ray absorption study of Cu species in Cu-CHA catalysts for NH3-SCR during temperature-programmed reduction in NO/NH3. Research on Chemical Intermediates, 2021, 47, 357-375 EXAFS wavelet transform analysis of Cu-MOR zeolites for the direct methane to methanol conversion. Physical Chemistry Chemical Physics, 2020, 22, 18950-18963 On the conversion of CO2 to value added products over composite PdZn and H-ZSM-5 catalysts: excess Zn over Pd, a compromise or a penalty?. Catalysis Science and Technology, 2020, 10, 4373-4385 Titanium Defective Sites in TS-1: Structural Insights by Combining Spectroscopy and Simulation. Angewandte Chemie, 2020, 132, 18302-18307 Titanium Defective Sites in TS-1: Structural Insights by Combining Spectroscopy and Simulation. Angewandte Chemie, 1nternational Edition, 2020, 59, 18145-18150 Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol. Catalysis, 2020, 10, 191 Revisiting the identity of BigCiz: Part II. Morphology and exposed surfaces studied by vibrational spectroscopies and DFT calculation. Journal of Catalysis, 2020, 385, 300-312 Bimetallic hexanuclear clusters in Ce/Zr-UiO-66 MOFs: in situ FTIR spectroscopy and modelling insights. Dalton Transactions, 2020, 49, 5794-5797 Adsorption Properties of Ce5(BDC)7.5(DMF)4 MOF. Inarganics, 2020, 8, 9 UiO-66 type MOFs with mixed-linkers - 1,4-Benzenedicarboxylate and 1,4-naphthalenedicarboxylate: Effect of the modulator and post-synthetic exchange. Microporous and Mesoporous Materials, 2020, 305, 110324 As	Exploring the Multilevel Porous System Down to the Active Sites. ACS Applied Materials & Amp; Interfaces, 2021, 13, 49114-49127 Copper Pairing in the Mordenite Framework as a Function of the Cu /Cu Speciation. Angewandte Chemie - International Edition, 2021, 60, 25891-25896 In situ X-ray absorption study of Cu species in Cu-CHA catalysts for NH3-SCR during temperature-programmed reduction in NO/NH3. Research on Chemical Intermediates, 2021, 47, 357-375-28 EXAFS wavelet transform analysis of Cu-MOR zeolites for the direct methane to methanol conversion. Physical Chemistry Chemical Physics, 2020, 22, 18950-18963 On the conversion of CO2 to value added products over composite PdZn and H-ZSM-5 catalysts: excess Zn over Pd, a compromise or a penalty. Catalysis Science and Technology, 2020, 10, 4373-4385-55 Titanium Defective Sites in TS-1: Structural Insights by Combining Spectroscopy and Simulation. Angewandte Chemie. 2020, 132, 18302-18307 Titanium Defective Sites in TS-1: Structural Insights by Combining Spectroscopy and Simulation. Angewandte Chemie. International Edition, 2020, 59, 18145-18150 Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol. Catalysts, 2020, 10, 191 Revisiting the identity of BMgCl2: Part II. Morphology and exposed surfaces studied by vibrational spectroscopies and DFT calculation. Journal of Catalysis, 2020, 387, 1-11 A temporal analysis of products (TAP) study of C2-C4 alkene reactions with a well-defined pool of methylating species on TSM-22 zeolite. Journal of Catalysis, 2020, 385, 300-312 Bimetallic hexanuclear clusters in Ce/Zr-UiO-66 MOFs: in situ FTIR spectroscopy and modelling insights. Dalton Transactions, 2020, 49, 5794-5797 Adsorption Properties of Ce5(BDC)7.5(DMF)4 MOF. Inorganics, 2020, 8, 9 UiO-66 type MOFs with mixed-linkers-1,4-Benzenedicarboxylate and 1,4-naphthalenedicarboxylate: Effect of the modulator and post-synthetic exchange. Microporous and Mesoporous Materials, 2020, 305, 110324 A spect	Exploring the Multilevel Porous System Down to the Active Sites. ACS Applied Materials 8amp; hoterfaces, 2021, 13, 49114-49127 Copper Pairing in the Mordenite Framework as a Function of the Cu /Cu Speciation. Angewandte 164 2 Investigating the role of Cu-oxo species in Cu-nitrate formation over Cu-CHA catalysts. Physical Chemistry Chemical Physics, 2021, 23, 18322-18337 In situ X-ray absorption study of Cu species in Cu-CHA catalysts for NH3-SCR during temperature-programmed reduction in NO/NH3. Research on Chemical Intermediates, 2021, 47, 357-375 2-8 3 In situ X-ray absorption study of Cu species in Cu-CHA catalysts for NH3-SCR during temperature-programmed reduction in NO/NH3. Research on Chemical Intermediates, 2021, 47, 357-375 2-8 3 In situ X-ray absorption study of Cu species in Cu-CHA catalysts for NH3-SCR during temperature-programmed reduction in NO/NH3. Research on Chemical Intermediates, 2021, 47, 357-375 2-8 3 In situ X-ray absorption study of Cu species in Cu-CHA catalysts for NH3-SCR during temperature-programmed reduction in NO/NH3. Research on Chemical Physics, 2020, 22, 18950-18963 On the conversion. Physical Chemistry Chemical Physics, 2020, 22, 18950-18963 On the conversion of CO2 to value added products over composite PdZn and H-Z5M-5 catalysts: excess Zn over Pd, a compromise or a penalty?. Catalysis Science and Technology, 2020, 10, 4373-4385 5-5 9 Titanium Defective Sites in TS-1: Structural Insights by Combining Spectroscopy and Simulation. Angewandte Chemie, 2020, 132, 18302-18307 Titanium Defective Sites in TS-1: Structural Insights by Combining Spectroscopy and Simulation. Angewandte Chemie, 2020, 132, 18302-18307 Titanium Defective Sites in TS-1: Structural Insights by Combining Spectroscopy and Simulation. Angewandte Chemie, International Edition, 2020, 59, 18145-18150 Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanelo. Catalysis, 2020, 39, 11312 A temporal analysis of products (TAP) study of C2-C4 alk

449	Structure and Reactivity of Oxygen-Bridged Diamino Dicopper(II) Complexes in Cu-Ion-Exchanged Chabazite Catalyst for NH-Mediated Selective Catalytic Reduction. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15884-15896	16.4	51
448	Identifying Cu-oxo species in Cu-zeolites by XAS: A theoretical survey by DFT-assisted XANES simulation and EXAFS wavelet transform. <i>Catalysis Today</i> , 2020 , 345, 125-135	5.3	33
447	Characterization and Modeling of Reversible CO2 Capture from Wet Streams by a MgO/Zeolite Y Nanocomposite. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 17214-17224	3.8	15
446	Evidence of Mixed-Ligand Complexes in CullHA by Reaction of Cu Nitrates with NO/NH3 at Low Temperature. <i>ChemCatChem</i> , 2019 , 11, 3828-3838	5.2	22
445	Temperature-programmed reduction with NO as a characterization of active Cu in Cu-CHA catalysts for NH3-SCR. <i>Catalysis Science and Technology</i> , 2019 , 9, 2608-2619	5.5	14
444	Functionalized nanoporous gold as a new biosensor platform for ultra-low quantitative detection of human serum albumin. <i>Sensors and Actuators B: Chemical</i> , 2019 , 288, 460-468	8.5	17
443	Dynamic Cull/Cul speciation in Cu-CHA catalysts by in situ Diffuse Reflectance UVIIis-NIR spectroscopy. <i>Applied Catalysis A: General</i> , 2019 , 578, 1-9	5.1	33
442	Cu-Exchanged Ferrierite Zeolite for the Direct CH4 to CH3OH Conversion: Insights on Cu Speciation from X-Ray Absorption Spectroscopy. <i>Topics in Catalysis</i> , 2019 , 62, 712-723	2.3	5
441	Evolution of Pt and Pd species in functionalized UiO-67 metal-organic frameworks. <i>Catalysis Today</i> , 2019 , 336, 33-39	5.3	13
440	Metal-organic Framework Sponges 2019 , 59-121		
440	Metal-organic Framework Sponges 2019 , 59-121 Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol. <i>ChemCatChem</i> , 2019 , 11, 5022-5026	5.2	28
	Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to	5.2 3.6	28
439	Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol. <i>ChemCatChem</i> , 2019 , 11, 5022-5026 Nature and Topology of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR	3.6	
439	Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol. <i>ChemCatChem</i> , 2019 , 11, 5022-5026 Nature and Topology of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal-Loaded ZSM-5. <i>Angewandte Chemie</i> , 2019 , 131, 12528-12533	3.6	3
439 438 437	Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol. <i>ChemCatChem</i> , 2019 , 11, 5022-5026 Nature and Topology of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal-Loaded ZSM-5. <i>Angewandte Chemie</i> , 2019 , 131, 12528-12533 Nature and Topology of Metal-Oxygen Binding Sites in Zeolite Materials: O High-Resolution EPR Spectroscopy of Metal-Loaded ZSM-5. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12398-1240 Controlling the Synthesis of Metal®rganic Framework UiO-67 by Tuning Its Kinetic Driving Force.	3.6)3 ^{16.4}	3
439 438 437 436	Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol. <i>ChemCatChem</i> , 2019 , 11, 5022-5026 Nature and Topology of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal-Loaded ZSM-5. <i>Angewandte Chemie</i> , 2019 , 131, 12528-12533 Nature and Topology of Metal-Oxygen Binding Sites in Zeolite Materials: O High-Resolution EPR Spectroscopy of Metal-Loaded ZSM-5. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12398-1240 Controlling the Synthesis of Metal®rganic Framework UiO-67 by Tuning Its Kinetic Driving Force. <i>Crystal Growth and Design</i> , 2019 , 19, 4246-4251 Röktitelbild: Nature and Topology of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sites In Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal®xygen Binding Sit	3.6 3.5	3
439 438 437 436 435	Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol. <i>ChemCatChem</i> , 2019 , 11, 5022-5026 Nature and Topology of MetalDxygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal-Loaded ZSM-5. <i>Angewandte Chemie</i> , 2019 , 131, 12528-12533 Nature and Topology of Metal-Oxygen Binding Sites in Zeolite Materials: O High-Resolution EPR Spectroscopy of Metal-Loaded ZSM-5. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12398-1240 Controlling the Synthesis of MetalDrganic Framework UiO-67 by Tuning Its Kinetic Driving Force. <i>Crystal Growth and Design</i> , 2019 , 19, 4246-4251 Rüktitelbild: Nature and Topology of MetalDxygen Binding Sites in Zeolite Materials: 170 High-Resolution EPR Spectroscopy of Metal-Loaded ZSM-5 (Angew. Chem. 36/2019). <i>Angewandte Chemie</i> , 2019 , 131, 12848-12848 Synthesis of ZSM-23 (MTT) zeolites with different crystal morphology and intergrowths: effects on the catalytic performance in the conversion of methanol to hydrocarbons. <i>Catalysis Science and</i>	3.6 3.5 3.6	3 10 16

The impact of reaction conditions and material composition on the stepwise methane to methanol conversion over Cu-MOR: An operando XAS study. <i>Catalysis Today</i> , 2019 , 336, 99-108	5.3	19
Operando UV-Raman study of the methanol to olefins reaction over SAPO-34: Spatiotemporal evolution monitored by different reactor approaches. <i>Catalysis Today</i> , 2019 , 336, 203-209	5.3	9
Active sites speciation of supported CoMoS phase probed by NO molecule: A combined IR and DFT study. <i>Journal of Catalysis</i> , 2018 , 361, 62-72	7.3	16
Effect of Ti Speciation on Catalytic Performance of TS-1 in the Hydrogen Peroxide to Propylene Oxide Reaction. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 9021-9034	3.8	48
Operando study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons. <i>Faraday Discussions</i> , 2018 , 208, 287-306	3.6	37
A Systematic Study of Isomorphically Substituted H-MAlPO-5 Materials for the Methanol-to-Hydrocarbons Reaction. <i>ChemPhysChem</i> , 2018 , 19, 484-495	3.2	11
Computational Assessment of Relative Sites Stabilities and Site-Specific Adsorptive Properties of Titanium Silicalite-1. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 1612-1621	3.8	15
High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics. <i>Journal of Catalysis</i> , 2018 , 362, 146-163	7.3	78
Characterization of Metal Centers in Zeolites for Partial Oxidation Reactions. <i>Structure and Bonding</i> , 2018 , 91-154	0.9	4
Cu-CHA - a model system for applied selective redox catalysis. <i>Chemical Society Reviews</i> , 2018 , 47, 8097-	· & \$333	138
Investigating the Low Temperature Formation of Cu -(N,O) Species on Cu-CHA Zeolites for the Selective Catalytic Reduction of NO. <i>Chemistry - A European Journal</i> , 2018 , 24, 12044-12053	4.8	31
A Novel Raman Setup Based on Magnetic-Driven Rotation of Sample. <i>Topics in Catalysis</i> , 2018 , 61, 1491-	12498	11
On the structure of superbasic (MgO) sites solvated in a faujasite zeolite. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 18503-18514	3.6	6
Exact Stoichiometry of Ce Zr Cornerstones in Mixed-Metal UiO-66 Metal-Organic Frameworks Revealed by Extended X-ray Absorption Fine Structure Spectroscopy. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17379-17383	16.4	44
The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15270-15278	16.4	123
The Effect of Al-Alkyls on the Phillips Catalyst for Ethylene Polymerization: The Case of Diethylaluminum Ethoxide (DEALE). <i>Topics in Catalysis</i> , 2018 , 61, 1465-1473	2.3	6
Topology-dependent hydrocarbon transformations in the methanol-to-hydrocarbons reaction studied by operando UV-Raman spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 26580-2659	90 ⁶	12
Exploring structure and reactivity of Cu sites in functionalized UiO-67 MOFs. <i>Catalysis Today</i> , 2017 , 283, 89-103	5.3	42
	Operando UV-Raman study of the methanol to olefins reaction over SAPO-34: Spatiotemporal evolution monitored by different reactor approaches. <i>Catalysis Today</i> , 2019, 336, 203-209 Active sites speciation of supported CoMoS phase probed by NO molecule: A combined IR and DFT study. <i>Journal of Catalysis</i> , 2018, 361, 62-72 Effect of Ti Speciation on Catalytic Performance of TS-1 in the Hydrogen Peroxide to Propylene Oxide Reaction. <i>Journal of Physical Chemistry</i> C, 2018, 122, 9021-9034 Operando study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons. <i>Faraday Discussions</i> , 2018, 208, 287-306 A Systematic Study of Isomorphically Substituted H-MAIPO-5 Materials for the Methanol-to-Hydrocarbons Reaction. <i>ChemPhysChem</i> , 2018, 19, 484-495 Computational Assessment of Relative Sites Stabilities and Site-Specific Adsorptive Properties of Titanium Silicalite-1. <i>Journal of Physical Chemistry</i> C, 2018, 122, 1612-1621 High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics. <i>Journal of Catalysis</i> , 2018, 362, 146-163 Characterization of Metal Centers in Zeolites for Partial Oxidation Reactions. <i>Structure and Bonding</i> , 2018, 91-154 Cu-CHA - a model system for applied selective redox catalysis. <i>Chemical Society Reviews</i> , 2018, 47, 8097-Investigating the Low Temperature Formation of Cu-(N,O) Species on Cu-CHA Zeolites for the Selective Catalytic Reduction of NO. <i>Chemistry - A European Journal</i> , 2018, 24, 12044-12053 A Novel Raman Setup Based on Magnetic-Driven Rotation of Sample. <i>Topics in Catalysis</i> , 2018, 61, 1491-0n the structure of superbasic (MgO) sites solvated in a faujasite zeolite. <i>Physical Chemistry Chemical Physics</i> , 2018, 20, 18503-18514 Exact Stoichiometry of Ce 2r Cornerstones in Mixed-Metal UiO-66 Metal-Organic Frameworks Revealed by Extended X-ray Absorption Fine Structure Spectroscopy. <i>Journal of the American Chemical Society</i> , 2018, 140, 15270-15278 The Nuclearity of the A	Computational Assessment of Relative Sites Stabilities and Site-Specific Adsorptive Properties of Titanium Silicalite-1. Journal of Physical Chemistry C, 2018, 122, 1612-1621 High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics. Journal of Catalysis, 2018, 361, 62-72 Characterization of Metal Centers in Zeolites for Partial Oxidation Reactions. Structure and Bonding 2, 2018, 91-154 A Novel Raman Setup Based on Magnetic-Driven Rotation of Sample. Topics in Catalysis, 2018, 61, 1491-1498 A Novel Raman Setup Based on Magnetic-Driven Rotation of Sample. Topics in Catalysis, 2018, 61, 1491-1498 The Effect of Al-Alkyls on the Phillips Catalyst for Ethylene Polymerization. The Case of Diethylauminum Ethoxide (DEALE). Topics in Catalysis, 2018, 146, 1473 Topology-dependent hydrocarbon transformations in the methanol-to-hydrocarbons reaction of No. Chemistry - A European Journal of Deale Structure Specific Adsorptions of the American Chemistry Chemical Physics, 2018, 136, 146-163 A Novel Raman Setup Based on Magnetic-Driven Rotation of Sample. Topics in Catalysis, 2018, 61, 1491-1498 The Neuclearity of the Active Site for Methanol Conversion in Mixed Metal UiO-66 Metal-Organic Frameworks Revealed by Extended X-ray Absorption Fine Structure Spectroscopy. Journal of the American Chemical Society, 2018, 140, 15270-15278 The Effect of Al-Alkyls on the Phillips Catalysis for European Journal of the American Chemical Society, 2018, 140, 15270-15278 Exceptional Catalysis on the Phillips Catalysis of Chemistry Chemical Physics, 2018, 20, 18503-18514 Exact Stoichiometry of Ce Zr Cornerstones in Mixed-Metal UiO-66 Metal-Organic Frameworks Revealed by Extended X-ray Absorption Fine Structure Spectroscopy. Journal of the American Chemical Society, 2018, 140, 15270-15278 The Effect of Al-Alkyls on the Phillips Catalyst for Ethylau Polymerization. The Case of Diethylauminum Ethoxide (DEALE). Topics in Catalysis, 2018, 61, 1465-1473 Topo

413	The Influence of Alcohols in Driving the Morphology of Magnesium Chloride Nanocrystals. <i>ChemCatChem</i> , 2017 , 9, 1782-1787	5.2	18
412	Fossil Fuels: The Effect of Zeolite Catalyst Particle Morphology on Catalyst Performance in the Conversion of Methanol to Hydrocarbons 2017 , 1-40		1
411	Tuning Pt and Cu sites population inside functionalized UiO-67 MOF by controlling activation conditions. <i>Faraday Discussions</i> , 2017 , 201, 265-286	3.6	27
410	CO adsorption on different organo-modified SBA-15 silicas: a multidisciplinary study on the effects of basic surface groups. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 14114-14128	3.6	17
409	Structured eactivation relationships in zeolites during the methanol to-hydrocarbons reaction: Complementary assessments of the coke content. <i>Journal of Catalysis</i> , 2017 , 351, 33-48	7.3	65
408	Highly effective ammonia removal in a series of Brfisted acidic porous polymers: investigation of chemical and structural variations. <i>Chemical Science</i> , 2017 , 8, 4399-4409	9.4	62
407	CO Capture in Dry and Wet Conditions in UTSA-16 Metal-Organic Framework. <i>ACS Applied Materials & Conditions in UTSA-16 Metal-Organic Framework</i> . <i>ACS Applied Materials & Conditions in UTSA-16 Metal-Organic Framework</i> . <i>ACS Applied Materials & Conditions in UTSA-16 Metal-Organic Framework</i> . <i>ACS Applied Materials & Conditions in UTSA-16 Metal-Organic Framework</i> . <i>ACS Applied Materials & Conditions in UTSA-16 Metal-Organic Framework</i> . <i>ACS Applied Materials & Conditions in UTSA-16 Metal-Organic Framework</i> . <i>ACS Applied Materials & Conditions in UTSA-16 Metal-Organic Framework</i> .	9.5	46
406	Electronic and Geometrical Structure of Zn+ Ions Stabilized in the Porous Structure of Zn-Loaded Zeolite H-ZSM-5: A Multifrequency CW and Pulse EPR Study. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 14238-14245	3.8	20
405	Conversion of methanol to hydrocarbons over zeolite ZSM-23 (MTT): exceptional effects of particle size on catalyst lifetime. <i>Chemical Communications</i> , 2017 , 53, 6816-6819	5.8	20
404	Spectroscopic Methods in Catalysis and Their Application in Well-Defined Nanocatalysts. <i>Studies in Surface Science and Catalysis</i> , 2017 , 221-284	1.8	2
403	Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Study. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 9312-9324	3.8	125
402	A multi-technique approach to disclose the reaction mechanism of dimethyl carbonate synthesis over amino-modified SBA-15 catalysts. <i>Applied Catalysis B: Environmental</i> , 2017 , 211, 323-336	21.8	19
401	1D-2D-3D Transformation Synthesis of Hierarchical Metal-Organic Framework Adsorbent for Multicomponent Alkane Separation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 819-828	16.4	54
400	Methane to Methanol: Structure-Activity Relationships for Cu-CHA. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14961-14975	16.4	202
399	In Situ Investigation of the Deactivation Mechanism in Ni-ZSM5 During Ethylene Oligomerization. <i>Topics in Catalysis</i> , 2017 , 60, 1664-1672	2.3	6
398	Ligands Make the Difference! Molecular Insights into Cr/SiO Phillips Catalyst during Ethylene Polymerization. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17064-17073	16.4	37
397	Zeolite morphology and catalyst performance: conversion of methanol to hydrocarbons over offretite. <i>Catalysis Science and Technology</i> , 2017 , 7, 5435-5447	5.5	10
396	A spin transition mechanism for cooperative adsorption in metal-organic frameworks. <i>Nature</i> , 2017 , 550, 96-100	50.4	142

(2016-2017)

395	CO2 Hydrogenation over Pt-Containing UiO-67 Zr-MOFs The Base Case. <i>Industrial & amp; Engineering Chemistry Research</i> , 2017 , 56, 13206-13218	3.9	52
394	Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity. <i>Chemical Science</i> , 2017 , 8, 6836-6851	9.4	129
393	The Importance of Interactions at the Molecular Level: A Spectroscopic Study of a New Composite Sorber Material. <i>Applied Spectroscopy</i> , 2017 , 71, 2278-2285	3.1	1
392	Modulator Effect in UiO-66-NDC (1,4-Naphthalenedicarboxylic Acid) Synthesis and Comparison with UiO-67-NDC Isoreticular Metal@rganic Frameworks. <i>Crystal Growth and Design</i> , 2017 , 17, 5422-5431	3.5	42
391	Conductive ZSM-5-Based Adsorbent for CO2 Capture: Active Phase vs Monolith. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 8485-8498	3.9	27
390	Click-based porous cationic polymers for enhanced carbon dioxide capture. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 372-383	13	49
389	Increasing the stability of Mg2(dobpdc) metal@rganic framework in air through solvent removal. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 444-448	7.8	20
388	Probing Structure and Reactivity of Metal Centers in Metal®rganic Frameworks by XAS Techniques 2017 , 397-430		4
387	The Cu-CHA deNOx Catalyst in Action: Temperature-Dependent NH3-Assisted Selective Catalytic Reduction Monitored by Operando XAS and XES. <i>Journal of the American Chemical Society</i> , 2016 , 138, 12025-8	16.4	197
386	Surface Investigation and Morphological Analysis of Structurally Disordered MgCl2 and MgCl2/TiCl4 ZieglerNatta Catalysts. <i>ACS Catalysis</i> , 2016 , 6, 5786-5796	13.1	62
385	UV-Raman Fingerprint of Brilsted Sites in MFI Zeolites: A Useful Marker in Dealumination Detection. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 18088-18092	3.8	9
384	CO2 Adsorption Sites in UTSA-16: Multitechnique Approach. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 12068-12074	3.8	18
383	Pre-reduction of the Phillips CrVI/SiO2 catalyst by cyclohexene: A model for the induction period of ethylene polymerization. <i>Journal of Catalysis</i> , 2016 , 337, 45-51	7.3	18
382	Spectroscopic Study on the Surface Properties and Catalytic Performances of Palladium Nanoparticles in Poly(ionic liquid)s. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 1683-1692	3.8	21
381	New insights into UTSA-16. Physical Chemistry Chemical Physics, 2016, 18, 220-7	3.6	40
380	IR and Raman Spectroscopies Probing MOFs Structure, Defectivity, and Reactivity 2016 , 657-690		4
379	Solvent-Driven Gate Opening in MOF-76-Ce: Effect on CO2 Adsorption. <i>ChemSusChem</i> , 2016 , 9, 713-9	8.3	42
378	A XAFS study of the local environment and reactivity of Pt- sites in functionalized UiO-67 MOFs. Journal of Physics: Conference Series, 2016 , 712, 012125	0.3	6

377	Active sites in Cu-SSZ-13 deNOx catalyst under reaction conditions: a XAS/XES perspective. <i>Journal of Physics: Conference Series</i> , 2016 , 712, 012041	0.3	11
376	Reactivity of Hydrosilanes with the CrII/SiO2 Phillips Catalyst: Observation of Intermediates and Properties of the Modified CrII Sites. <i>Topics in Catalysis</i> , 2016 , 59, 1732-1739	2.3	2
375	Incorporation of Ni into HZSM-5 zeolites: Effects of zeolite morphology and incorporation procedure. <i>Microporous and Mesoporous Materials</i> , 2016 , 229, 76-82	5.3	18
374	Toward the Understanding of the Comonomer Effect on CrII/SiO2 Phillips Catalyst. <i>ACS Catalysis</i> , 2016 , 6, 2918-2922	13.1	9
373	Defect Engineering: Tuning the Porosity and Composition of the Metal Drganic Framework UiO-66 via Modulated Synthesis. <i>Chemistry of Materials</i> , 2016 , 28, 3749-3761	9.6	596
372	Functionalizing the Defects: Postsynthetic Ligand Exchange in the Metal Organic Framework UiO-66. <i>Chemistry of Materials</i> , 2016 , 28, 7190-7193	9.6	125
371	NitrateBitrite equilibrium in the reaction of NO with a Cu-CHA catalyst for NH3-SCR. <i>Catalysis Science and Technology</i> , 2016 , 6, 8314-8324	5.5	39
370	The role of dispersive forces determining the energetics of adsorption in Ti zeolites. <i>Journal of Computational Chemistry</i> , 2016 , 37, 2659-2666	3.5	7
369	Gradual release of strongly bound nitric oxide from Fe(NO)(dobdc). <i>Journal of the American Chemical Society</i> , 2015 , 137, 3466-9	16.4	65
368	XAS and XES Techniques Shed Light on the Dark Side of Ziegler Natta Catalysts: Active-Site Generation. <i>ChemCatChem</i> , 2015 , 7, 1432-1437	5.2	23
367	Design of high surface area poly(ionic liquid)s to convert carbon dioxide into ethylene carbonate. Journal of Materials Chemistry A, 2015 , 3, 8508-8518	13	45
366	Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. <i>Nature</i> , 2015 , 519, 303-8	3 50.4	807
365	In Situ Resonant UV-Raman Spectroscopy of Polycyclic Aromatic Hydrocarbons. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 11694-11698	3.8	21
364	A Consistent Reaction Scheme for the Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. <i>ACS Catalysis</i> , 2015 , 5, 2832-2845	13.1	319
363	Probing zeolites by vibrational spectroscopies. <i>Chemical Society Reviews</i> , 2015 , 44, 7262-341	58.5	241
362	Activation and In Situ Ethylene Polymerization on Silica-Supported Ziegler Natta Catalysts. <i>ACS Catalysis</i> , 2015 , 5, 5586-5595	13.1	24
361	Nanoporous gold obtained from a metallic glass precursor used as substrate for surface-enhanced Raman scattering. <i>Philosophical Magazine Letters</i> , 2015 , 95, 474-482	1	18
360	Porous Materials: Submicrometer-Sized ZIF-71 Filled Organophilic Membranes for Improved Bioethanol Recovery: Mechanistic Insights by Monte Carlo Simulation and FTIR Spectroscopy (Adv. Funct Mater 4/2015). Advanced Eunctional Materials 2015, 25, 498-498	15.6	1

(2014-2015)

359	Spectroscopic and Structural Characterization of Thermal Decomposition of EMg(BH4)2: Dynamic Vacuum versus H2 Atmosphere. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 25340-25351	3.8	25
358	MoS2 supported on P25 titania: A model system for the activation of a HDS catalyst. <i>Journal of Catalysis</i> , 2015 , 328, 225-235	7.3	32
357	Probing Reactive Platinum Sites in UiO-67 Zirconium Metal®rganic Frameworks. <i>Chemistry of Materials</i> , 2015 , 27, 1042-1056	9.6	95
356	Effect of surface hydroxylation on the catalytic activity of a Cr(II)/SiO2 model system of Phillips catalyst. <i>Journal of Catalysis</i> , 2015 , 324, 79-87	7.3	16
355	Submicrometer-Sized ZIF-71 Filled Organophilic Membranes for Improved Bioethanol Recovery: Mechanistic Insights by Monte Carlo Simulation and FTIR Spectroscopy. <i>Advanced Functional Materials</i> , 2015 , 25, 516-525	15.6	78
354	H2S interaction with HKUST-1 and ZIF-8 MOFs: A multitechnique study. <i>Microporous and Mesoporous Materials</i> , 2015 , 207, 90-94	5.3	68
353	Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction. <i>Chemical Science</i> , 2015 , 6, 548-563	9.4	265
352	Hydrogen storage of MgIn mixed metal borohydrides. <i>Journal of Alloys and Compounds</i> , 2014 , 615, S702-S705	5.7	16
351	Monolithic cells for solar fuels. <i>Chemical Society Reviews</i> , 2014 , 43, 7963-81	58.5	165
350	Methanol Conversion to Hydrocarbons (MTH) Over H-ITQ-13 (ITH) Zeolite. <i>Topics in Catalysis</i> , 2014 , 57, 143-158	2.3	14
349	Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. <i>Nature Chemistry</i> , 2014 , 6, 590-5	17.6	332
348	Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal © rganic Frameworks. <i>Crystal Growth and Design</i> , 2014 , 14, 5370-5372	3.5	219
347	Cr-MIL-101 encapsulated Keggin phosphotungstic acid as active nanomaterial for catalysing the alcoholysis of styrene oxide. <i>Green Chemistry</i> , 2014 , 16, 1351-1357	10	98
346	Synthesis and characterization of amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology. <i>Inorganic Chemistry</i> , 2014 , 53, 9509-15	5.1	108
345	Tuned to Perfection: Ironing Out the Defects in Metal D rganic Framework UiO-66. <i>Chemistry of Materials</i> , 2014 , 26, 4068-4071	9.6	472
344	Defect Sites in H2-Reduced TiO2Convert Ethylene to High Density Polyethylene without Activator. <i>ACS Catalysis</i> , 2014 , 4, 986-989	13.1	33
343	Carbon dioxide adsorption in amine-functionalized mixed-ligand metal-organic frameworks of UiO-66 topology. <i>ChemSusChem</i> , 2014 , 7, 3382-8	8.3	56
342	Fast carbon dioxide recycling by reaction with EMg(BH4)2. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 22482-6	3.6	20

341	Interaction of NH3 with Cu-SSZ-13 Catalyst: A Complementary FTIR, XANES, and XES Study. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1552-9	6.4	209
340	Reversible CO binding enables tunable CO/HIand CO/NIaeparations in metal-organic frameworks with exposed divalent metal cations. <i>Journal of the American Chemical Society</i> , 2014 , 136, 10752-61	16.4	160
339	Fundamental Aspects of H2S Adsorption on CPO-27-Ni. Journal of Physical Chemistry C, 2013, 117, 1561	15 3 .18562	22 ₇₁
338	Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons. <i>Journal of Catalysis</i> , 2013 , 307, 62-73	7.3	146
337	Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction. <i>Journal of Catalysis</i> , 2013 , 307, 238-245	7:3	124
336	Probing the surface of nanosheet H-ZSM-5 with FTIR spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 13363-70	3.6	42
335	Hierarchical Zeolitic Imidazolate Framework-8 Catalyst for Monoglyceride Synthesis. <i>ChemCatChem</i> , 2013 , 5, 3562-3566	5.2	69
334	In Situ Infrared Spectroscopic and Gravimetric Characterisation of the Solvent Removal and Dehydroxylation of the Metal Organic Frameworks UiO-66 and UiO-67. <i>Topics in Catalysis</i> , 2013 , 56, 770	0-782	110
333	Theoretical and experimental study on Mg(BH4)2In(BH4)2 mixed borohydrides. <i>Journal of Alloys and Compounds</i> , 2013 , 580, S282-S286	5.7	21
332	Cr-doped porous silica glass as a model material to describe Phillips catalyst properties. <i>Journal of Catalysis</i> , 2013 , 308, 319-327	7.3	12
331	Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-with similar Si/Al and Cu/Al ratios. <i>Dalton Transactions</i> , 2013 , 42, 12741-61	4.3	247
330	An alternative pathway for the synthesis of isocyanato- and urea-functionalised metal-organic frameworks. <i>Dalton Transactions</i> , 2013 , 42, 8249-58	4.3	12
329	H2 interaction with divalent cations in isostructural MOFs: a key study for variable temperature infrared spectroscopy. <i>Dalton Transactions</i> , 2013 , 42, 12586-95	4.3	28
328	Preference towards five-coordination in Ti silicalite-1 upon molecular adsorption. <i>ChemPhysChem</i> , 2013 , 14, 79-83	3.2	47
327	Impact of metal and anion substitutions on the hydrogen storage properties of M-BTT metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1083-91	16.4	128
326	Operando Raman spectroscopy applying novel fluidized bed micro-reactor technology. <i>Catalysis Today</i> , 2013 , 205, 128-133	5.3	35
325	Synthesis of Monoglycerides by Esterification of Oleic Acid with Glycerol in Heterogeneous Catalytic Process Using Tin Drganic Framework Catalyst. <i>Catalysis Letters</i> , 2013 , 143, 356-363	2.8	41
324	Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. <i>Chemical Reviews.</i> 2013 . 113. 1736-850	68.1	481

323	Stability vs. reactivity: understanding the adsorption properties of Ni3(BTP)2 by experimental and computational methods. <i>Dalton Transactions</i> , 2013 , 42, 6450-8	4.3	24	
322	Rutile Surface Properties Beyond the Single Crystal Approach: New Insights from the Experimental Investigation of Different Polycrystalline Samples and Periodic DFT Calculations. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 11186-11196	3.8	47	
321	Unit cell thick nanosheets of zeolite H-ZSM-5: Structure and activity. <i>Topics in Catalysis</i> , 2013 , 56, 558-	56 6 .3	29	
320	Silica-supported Ti chloride tetrahydrofuranates, precursors of Ziegler-Natta catalysts. <i>Dalton Transactions</i> , 2013 , 42, 12706-13	4.3	29	
319	The effect of hydrosilanes on the active sites of the Phillips catalyst: the secret for in situ ⊕lefin generation. <i>Chemistry - A European Journal</i> , 2013 , 19, 17277-82	4.8	17	
318	Molecular doping and gas sensing in Si nanowires: From charge injection to reduced dielectric mismatch. <i>Journal of Applied Physics</i> , 2013 , 114, 204302	2.5	8	
317	Combined study of structural properties on metal-organic frameworks with same topology but different linkers or metal. <i>Journal of Physics: Conference Series</i> , 2013 , 430, 012134	0.3	5	
316	Functionalization of CPO-27-Ni through metal hexacarbonyls: The role of open Ni2+ sites. <i>Microporous and Mesoporous Materials</i> , 2012 , 157, 56-61	5.3	12	
315	Synthesis and crystal chemistry of the STA-12 family of metal N,N?-piperazinebis(methylenephosphonate)s and applications of STA-12(Ni) in the separation of gases. <i>Microporous and Mesoporous Materials</i> , 2012 , 157, 3-17	5.3	45	
314	Spectroscopic characterization and photo/thermal resistance of a hybrid palygorskite/methyl red Mayan pigment. <i>Microporous and Mesoporous Materials</i> , 2012 , 155, 167-176	5.3	36	
313	Acetylene adsorption on CPO-27-M metal-organic frameworks (M=Fe, Co and Ni). <i>ChemPhysChem</i> , 2012 , 13, 445-8	3.2	34	
312	Inside Cover: Acetylene Adsorption on CPO-27-M Metal©rganic Frameworks (M=Fe, Co and Ni) (ChemPhysChem 2/2012). <i>ChemPhysChem</i> , 2012 , 13, 366-366	3.2		
311	Synthesis, characterization and CO2 uptake of a chiral Co(II) metal®rganic framework containing a thiazolidine-based spacer. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10335		32	
310	Synthesis and Characterization of High-Surface-Area Silicallitania Monoliths. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 10064-10072	3.8	17	
309	Role of internal coke for deactivation of ZSM-5 catalysts after low temperature removal of coke with NO2. <i>Catalysis Science and Technology</i> , 2012 , 2, 1196	5.5	22	
308	Spectroscopic and adsorptive studies of a thermally robust pyrazolato-based PCP. <i>Dalton Transactions</i> , 2012 , 41, 4012-9	4.3	24	
307	Role of Phosphate Species and Speciation Kinetics in Detergency Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 4173-4180	3.9	7	
306	Ethylene polymerization on a SiH4-modified Phillips catalyst: detection of in situ produced E blefins by operando FT-IR spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 2239-45	3.6	25	

305	Soft synthesis of isocyanate-functionalised metal-organic frameworks. <i>Dalton Transactions</i> , 2012 , 41, 14236-8	4.3	12
304	H2 storage in isostructural UiO-67 and UiO-66 MOFs. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 161	4 <u>326</u>	339
303	Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66. <i>Physical Review B</i> , 2012 , 86,	3.3	165
302	Particles Morphology and Surface Properties As Investigated by HRTEM, FTIR, and Periodic DFT Calculations: From Pyrogenic TiO2 (P25) to Nanoanatase. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 170	ว ชี8 -17	078
301	Umwandlung von Methanol in Kohlenwasserstoffe: Wie Zeolith-Hohlrüme und Porengr die Produktselektivit bestimmen. <i>Angewandte Chemie</i> , 2012 , 124, 5910-5933	3.6	148
300	Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 5810-31	16.4	1217
299	Structure Ectivity relationships of simple molecules adsorbed on CPO-27-Ni metal Brganic framework: In situ experiments vs. theory. <i>Catalysis Today</i> , 2012 , 182, 67-79	5.3	65
298	Supported Nanoparticles and Selective Catalysis: A Surface Science Approach 2011 , 29-71		4
297	Crystal Engineering of Metal-Organic Frameworks for Heterogeneous Catalysis 2011 , 271-298		5
296	Hydrogen storage properties and neutron scattering studies of Mg2(dobdc)a metal-organic framework with open Mg2+ adsorption sites. <i>Chemical Communications</i> , 2011 , 47, 1157-9	5.8	153
295	Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: comparison of TNU-9, IM-5, ZSM-11 and ZSM-5. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 2539-49	3.6	129
294	CO Adsorption on Anatase Nanocrystals: A Combined Experimental and Periodic DFT Study. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 7694-7700	3.8	69
293	Model oxide supported MoS2 HDS catalysts: structure and surface properties. <i>Catalysis Science and Technology</i> , 2011 , 1, 123	5.5	72
292	Chiral Catalysts 2011 , 193-235		1
291	Photocatalysts: Nanostructured Photocatalytic Materials for Solar Energy Conversion 2011 , 169-191		
290	Capsules and Cavitands: Synthetic Catalysts of Nanometric Dimension 2011 , 105-168		13
289	When Does Catalysis with Transition Metal Complexes Turn into Catalysis by Nanoparticles? 2011 , 73-10	03	11
288	Mechanism of Stereospecific Propene Polymerization Promoted by Metallocene and Nonmetallocene Catalysts 2011 , 299-322		

287	Structure d eactivation relationship for ZSM-5 catalysts governed by framework defects. <i>Journal of Catalysis</i> , 2011 , 280, 196-205	7.3	212
286	The role of chlorine and additives on the density and strength of Lewis and Brfisted acidic sites of EAl2O3 support used in oxychlorination catalysis: A FTIR study. <i>Journal of Catalysis</i> , 2011 , 284, 236-246	7.3	51
285	Selective Phenylacetylene Hydrogenation on a Polymer-Supported Palladium Catalyst Monitored by FTIR Spectroscopy. <i>ChemCatChem</i> , 2011 , 3, 222-226	5.2	26
284	Direct Evidence of Highly Dispersed Iron in Fellilicalite: A Raman Spectroscopic Study. <i>ChemCatChem</i> , 2011 , 3, 139-142	5.2	6
283	Synthesis of Titanium Chabazite: A New Shape Selective Oxidation Catalyst with Small Pore Openings and Application in the Production of Methyl Formate from Methanol. <i>ChemCatChem</i> , 2011 , 3, 1869-1871	5.2	33
282	Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination sites. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14814-22	16.4	404
281	Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. <i>Chemistry of Materials</i> , 2011 , 23, 1700-1718	9.6	1079
280	Cyclodextrin nanosponges as effective gas carriers. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2011 , 71, 189-194		58
279	Tailoring metal-organic frameworks for CO2 capture: the amino effect. <i>ChemSusChem</i> , 2011 , 4, 1281-90	0 8.3	56
278	Spectroscopic investigation of heterogeneous Ziegler-Natta catalysts: Ti and Mg chloride tetrahydrofuranates, their interaction compound, and the role of the activator. <i>Chemistry - A European Journal</i> , 2011 , 17, 8648-56	4.8	41
277	How defects and crystal morphology control the effects of desilication. <i>Catalysis Today</i> , 2011 , 168, 38-4	175.3	94
276	Methane conversion to light olefinsHow does the methyl halide route differ from the methanol to olefins (MTO) route?. <i>Catalysis Today</i> , 2011 , 171, 211-220	5.3	48
275	Ti-STT: a new zeotype shape selective oxidation catalyst. <i>Chemical Communications</i> , 2011 , 47, 11867-9	5.8	19
274	Host/Guest Interactions in a Sepiolite-Based Maya Blue Pigment: A Spectroscopic Study. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16764-16776	3.8	56
273	Infrared Spectroscopic Investigation of the Acidity and Availability of the Surface Hydroxyls of Three-Dimensional 12-Ring Zeotype H-ITQ-7. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 12090-12094	3.8	
272	Dehydrogenation reactions of 2NaBH4 + MgH2 system. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 7891-7896	6.7	35
271	Assessing the surface sites of the large pore 3-dimensional microporous material H-ITQ-7 using FT-IR spectroscopy and molecular probes. <i>Microporous and Mesoporous Materials</i> , 2011 , 141, 146-156	5.3	7
270	The Structure and Reactivity of Single and Multiple Sites on Heterogeneous and Homogeneous Catalysts: Analogies, Differences, and Challenges for Characterization Methods 2011 , 1-27		8

269 Selective Catalysts for Petrochemical Industry **2011**, 237-269

268	Quantification of copper phases, their reducibility and dispersion in doped-CuCl2/Al2O3 catalysts for ethylene oxychlorination. <i>Dalton Transactions</i> , 2010 , 39, 8437-49	4.3	54
267	Functionalization of UiO-66 Metal®rganic Framework and Highly Cross-Linked Polystyrene with Cr(CO)3: In Situ Formation, Stability, and Photoreactivity. <i>Chemistry of Materials</i> , 2010 , 22, 4602-4611	9.6	113
266	Highly-selective and reversible O2 binding in Cr3(1,3,5-benzenetricarboxylate)2. <i>Journal of the American Chemical Society</i> , 2010 , 132, 7856-7	16.4	266
265	Probing the surfaces of heterogeneous catalysts by in situ IR spectroscopy. <i>Chemical Society Reviews</i> , 2010 , 39, 4951-5001	58.5	354
264	Computational and Experimental Studies on the Adsorption of CO, N2, and CO2 on Mg-MOF-74. Journal of Physical Chemistry C, 2010 , 114, 11185-11191	3.8	267
263	Subnanometric Pd Particles Stabilized Inside Highly Cross-Linked Polymeric Supports. <i>Chemistry of Materials</i> , 2010 , 22, 2297-2308	9.6	38
262	A Multitechnique Approach to Spin-Flips for Cp2Cr(II) Chemistry in Confined State. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4451-4458	3.8	30
261	X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity. <i>Chemical Society Reviews</i> , 2010 , 39, 4885-927	58.5	112
260	Direct evidence of adsorption induced Cr(II) mobility on the SiO(2) surface upon complexation by CO. <i>Chemical Communications</i> , 2010 , 46, 976-8	5.8	56
259	Influence of additives in defining the active phase of the ethylene oxychlorination catalyst. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 5605-18	3.6	62
258	Investigation of Acid Centers in MIL-53(Al, Ga) for Brfisted-Type Catalysis: In Situ FTIR and Ab Initio Molecular Modeling. <i>ChemCatChem</i> , 2010 , 2, 1235-1238	5.2	62
257	Cubic octanuclear Ni(II) clusters in highly porous polypyrazolyl-based materials. <i>Journal of the American Chemical Society</i> , 2010 , 132, 7902-4	16.4	126
256	Adsorption and reactivity of nitrogen oxides (NO2, NO, N2O) on Felleolites. <i>Journal of Catalysis</i> , 2009 , 264, 104-116	7.3	127
255	The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology. <i>Topics in Catalysis</i> , 2009 , 52, 218-228	2.3	182
254	Assessing the acid properties of desilicated ZSM-5 by FTIR using CO and 2,4,6-trimethylpyridine (collidine) as molecular probes. <i>Applied Catalysis A: General</i> , 2009 , 356, 23-30	5.1	217
253	M/TiO2/SiO2 (M=Fe, Mn, and V) catalysts in photo-decomposition of sulfur mustard. <i>Applied Catalysis B: Environmental</i> , 2009 , 91, 546-553	21.8	34
252	Stability and reactivity of grafted Cr(CO)3 species on MOF linkers: a computational study. <i>Inorganic Chemistry</i> , 2009 , 48, 5439-48	5.1	25

251	Structure and Enhanced Reactivity of Chromocene Carbonyl Confined inside Cavities of NaY Zeolite. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 7305-7315	3.8	28
250	From Isolated Ag+ Ions to Aggregated Ag0 Nanoclusters in Silver-Exchanged Engelhard Titanosilicate (ETS-10) Molecular Sieve: Reversible Behavior. <i>Chemistry of Materials</i> , 2009 , 21, 1343-135	3 ^{9.6}	40
249	Modeling CO and N2 adsorption at Cr surface species of Phillips catalyst by hybrid density functionals: effect of Hartree-Fock exchange percentage. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 14261-9	2.8	19
248	CO Adsorption on CPO-27-Ni Coordination Polymer: Spectroscopic Features and Interaction Energy. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 3292-3299	3.8	114
247	Response of CPO-27-Ni towards CO, N2 and C2H4. Physical Chemistry Chemical Physics, 2009, 11, 9811-2	23 .6	79
246	AM-6: a microporous one-dimensional ferromagnet. <i>Dalton Transactions</i> , 2009 , 8025-32	4.3	16
245	Chromocene in porous polystyrene: an example of organometallic chemistry in confined spaces. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 2218-27	3.6	16
244	Formation and reactivity of CrIIcarbonyls hosted in polar and non polar supports. <i>Journal of Physics: Conference Series</i> , 2009 , 190, 012140	0.3	2
243	Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene. <i>Journal of Catalysis</i> , 2008 , 254, 180-189	7.3	127
242	Structural Transformations and adsorption of fuel-related gases of a structurally responsive nickel phosphonate metal-organic framework, Ni-STA-12. <i>Journal of the American Chemical Society</i> , 2008 , 130, 15967-81	16.4	161
241	Role of exposed metal sites in hydrogen storage in MOFs. <i>Journal of the American Chemical Society</i> , 2008 , 130, 8386-96	16.4	361
240	Local Structure of CPO-27-Ni Metallorganic Framework upon Dehydration and Coordination of NO. <i>Chemistry of Materials</i> , 2008 , 20, 4957-4968	9.6	174
239	Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. <i>Chemical Communications</i> , 2008 , 5125-7	5.8	331
238	Photo-degradation of yperite over V, Fe and Mn-doped titania-silica photocatalysts. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 6562-70	3.6	18
237	Au Nanoparticles as SERS Probes of the Silica Surface Layer Structure in the Absence and Presence of Adsorbates. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 4932-4936	3.8	13
236	Conversion of Methanol to Hydrocarbons: Spectroscopic Characterization of Carbonaceous Species Formed over H-ZSM-5. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 9710-9716	3.8	115
235	Effect of Ag and Au doping on the photocatalytic activity of TiO2 supported on textile fibres. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1077, 72001		2
234	Microcrystalline Oxides: Bridging the Gap Between Single Crystals and Dispersed Oxides 2008 , 1352		

233	In situ Raman study to monitor bioactive glasses reactivity. <i>Journal of Raman Spectroscopy</i> , 2008 , 39, 260-264	2.3	19
232	Structure and redox activity of copper sites isolated in a nanoporous P4VP polymeric matrix. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 9269-73	16.4	18
231	Structure and Redox Activity of Copper Sites Isolated in a Nanoporous P4VP Polymeric Matrix. <i>Angewandte Chemie</i> , 2008 , 120, 9409-9413	3.6	5
230	Synthesis of ZnOdarbon composites and imprinted carbon by the pyrolysis of ZnCl2-catalyzed furfuryl alcohol polymers. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 196, 143-153	4.7	63
229	Tailoring the activity of Ti-based photocatalysts by playing with surface morphology and silver doping. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 196, 165-173	4.7	36
228	Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self cleaning properties. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 199, 64-72	4.7	133
227	Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. <i>Applied Catalysis A: General</i> , 2008 , 350, 16-23	5.1	288
226	A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13850-1	16.4	4225
225	Reactivity of Ti(IV) species hosted in TS-1 towards H2O2-H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data: a review and new highlights. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 4854-78	3.6	176
224	Reactivity of Cr Species Grafted on SiO2/Si(100) Surface: A Reflection Extended X-ray Absorption Fine Structure Study down to the Submonolayer Regime. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 164	137 ⁸ 16	444
223	Functionalization of zeolitic cavities: grafting NH2 groups in framework T sites of B-SSZ-13a way to obtain basic solids catalysts?. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12131-40	16.4	31
222	Effect of Boron Substitution in Chabazite Framework: IR Studies on the Acidity Properties and Reactivity Towards Methanol. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 2992-2999	3.8	35
221	Selective catalysis and nanoscience: an inseparable pair. Chemistry - A European Journal, 2007, 13, 2440-	6р 8	80
220	Effect of framework Si/Al ratio and extra-framework aluminum on the catalytic activity of Y zeolite. <i>Applied Catalysis A: General</i> , 2007 , 333, 245-253	5.1	111
219	Photoactive TiO2 films on cellulose fibres: synthesis and characterization. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2007 , 189, 286-294	4.7	199
218	Methylation of phenol over high-silica beta zeolite: Effect of zeolite acidity and crystal size on catalyst behaviour. <i>Journal of Catalysis</i> , 2007 , 245, 285-300	7.3	44
217	Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. <i>Journal of Catalysis</i> , 2007 , 249, 195-207	7.3	767
216	Structural incorporation of carbon and nitrogen into B-SSZ-13: a spectroscopic and computational studies. <i>Studies in Surface Science and Catalysis</i> , 2007 , 170, 585-593	1.8	3

(2005-2007)

215	The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3612-20	16.4	503
214	High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1203-9	16.4	482
213	Characterization of a New Porous Pt-Containing Metal-Organic Framework Containing Potentially Catalytically Active Sites: Local Electronic Structure at the Metal Centers. <i>Chemistry of Materials</i> , 2007 , 19, 211-220	9.6	76
212	Infrared Spectroscopy of Transient Surface Species. <i>Advances in Catalysis</i> , 2007 , 51, 1-74	2.4	38
211	Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 2676-85	3.6	321
2 10	(I(2))(n) encapsulation inside TiO(2): a way to tune photoactivity in the visible region. <i>Journal of the American Chemical Society</i> , 2007 , 129, 2822-8	16.4	93
209	New frontier in transmission IR spectroscopy of molecules adsorbed on high surface area solids: Experiments below liquid nitrogen temperature. <i>Catalysis Today</i> , 2006 , 113, 65-80	5.3	33
208	In situ FTIR spectroscopy of key intermediates in the first stages of ethylene polymerization on the Cr/SiO2 Phillips catalyst: Solving the puzzle of the initiation mechanism?. <i>Journal of Catalysis</i> , 2006 , 240, 172-181	7.3	76
207	Reversibility of structural collapse in zeolite Y: Alkane cracking and characterization. <i>Journal of Catalysis</i> , 2006 , 241, 66-73	7.3	37
206	Vibrational properties of Cr(II) centers on reduced Phillips catalysts highlighted by resonant Raman spectroscopy. <i>ChemPhysChem</i> , 2006 , 7, 342-4	3.2	36
205	Polyethylene Microtubes from Silica Fiber-based Polyethylene Composites Synthesized by an In Situ Catalytic Method. <i>Advanced Materials</i> , 2006 , 18, 3111-3114	24	10
204	A thermally stable Pt/Y-based metal-organic framework: Exploring the accessibility of the metal centers with spectroscopic methods using H2O, CH3OH, and CH3CN as probes. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 21509-20	3.4	93
203	Vibrational and thermodynamic properties of Ar, N2, O2, H2 and CO adsorbed and condensed into (H,Na)-Y zeolite cages as studied by variable temperature IR spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 1186-96	3.6	40
202	Tailoring the Selectivity of Ti-Based Photocatalysts (TiO2 and Microporous ETS-10 and ETS-4) by Playing with Surface Morphology and Electronic Structure. <i>Chemistry of Materials</i> , 2006 , 18, 3412-3424	9.6	74
201	Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework: Spectroscopic Characterization upon Activation and Interaction with Adsorbates. <i>Chemistry of Materials</i> , 2006 , 18, 133	37-134	6 ⁵⁵⁵
200	Hydrogen adsorption and spill-over effects on HII and Pd-containing Y zeolites: An experimental and theoretical investigation. <i>Applied Catalysis A: General</i> , 2006 , 307, 3-12	5.1	50
199	Probing the acid sites in confined spaces of microporous materials by vibrational spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 1627-42	3.6	121
198	Behavior of extraframework Fe sites in MFI and MCM-22 zeolites upon interaction with N2O and NO. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 22377-85	3.4	20

197	Acidity properties of CHA-zeolites (SAPO-34 and SSZ-13): an FTIR spectroscopic study. <i>Studies in Surface Science and Catalysis</i> , 2005 , 471-479	1.8	11
196	FTIR adsorption studies of H2O and CH3OH in the isostructural H-SSZ-13 and H-SAPO-34: formation of H-bonded adducts and protonated clusters. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 7724-32	3.4	91
195	Maya blue: a computational and spectroscopic study. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 19360-8	33.4	140
194	Assessing the acidity of high silica chabazite H-SSZ-13 by FTIR using CO as molecular probe: Comparison with H-SAPO-34. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 2779-84	3.4	122
193	FTIR investigation of the H2, N2, and C2H4 molecular complexes formed on the Cr(II) sites in the Phillips catalyst: a preliminary step in the understanding of a complex system. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 15024-31	3.4	43
192	The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: a frontier for the characterization methods. <i>Chemical Reviews</i> , 2005 , 105, 115-84	68.1	359
191	New Strategies in the Raman Study of the Cr/SiO2 Phillips Catalyst: Observation of Molecular Adducts on Cr(II) Sites. <i>Chemistry of Materials</i> , 2005 , 17, 2019-2027	9.6	59
190	Hydrogen storage in Chabazite zeolite frameworks. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 3197-2	0 36	93
189	Interaction of Hydrogen with MOF-5. Journal of Physical Chemistry B, 2005, 109, 18237-42	3.4	150
188	The role of surfaces in hydrogen storage. Studies in Surface Science and Catalysis, 2005, 155, 481-492	1.8	2
187	Liquid hydrogen in protonic chabazite. Journal of the American Chemical Society, 2005, 127, 6361-6	16.4	189
186	Coordination and oxidation changes undergone by iron species in Fe-MCM-22 upon template removal, activation and redBx treatments: an in situ IR, EXAFS and XANES study. <i>Journal of Catalysis</i> , 2005 , 229, 45-54	7.3	33
185	Catalytic activity of Fe ions in iron-based crystalline and amorphous systems: role of dispersion, coordinative unsaturation and Al content. <i>Journal of Catalysis</i> , 2005 , 229, 127-135	7.3	27
184	In situ, Cr K-edge XAS study on the Phillips catalyst: activation and ethylene polymerization. <i>Journal of Catalysis</i> , 2005 , 230, 98-108	7.3	93
183	Tuning the structure, distribution and reactivity of polymerization centres of Cr(II)/SiO2 Phillips catalyst by controlled annealing. <i>Journal of Catalysis</i> , 2005 , 236, 233-244	7.3	46
182	Persistent methylbenzenium ions in protonated zeolites: the required proton affinity of the guest hydrocarbon. <i>ChemPhysChem</i> , 2005 , 6, 232-5	3.2	47
181	Dimethyl carbonate in the supercages of NaY zeolite: the role of local fields in promoting methylation and carboxymethylation activity. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4774	<u>.</u> 16.4	39
180	Hydrogen Storage in Chabazite Zeolite Frameworks <i>ChemInform</i> , 2005 , 36, no		1

(2003-2005)

179	New precursor for the post-synthesis preparation of Fe-ZSM-5 zeolites with low iron content. <i>Catalysis Letters</i> , 2005 , 103, 33-41	2.8	40
178	Ti-Peroxo Species in the TS-1/H2O2/H2O System. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 3573-3583	3.4	180
177	Equilibria between peroxo and hydroperoxo species in the titanosilicates: an in situ high-resolution XANES investigation. <i>ChemPhysChem</i> , 2004 , 5, 1799-804	3.2	49
176	Carbon monoxide MgO from dispersed solids to single crystals: a review and new advances. <i>Progress in Surface Science</i> , 2004 , 76, 71-146	6.6	193
175	Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. <i>Chemical Communications</i> , 2004 , 2300-1	5.8	381
174	Heterogeneous Nonclassical Carbonyls Stabilized in Cu(I)[and Ag(I)[ISM-5 Zeolites: Thermodynamic and Spectroscopic Features. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 9970-9983	3.4	84
173	1-Butene Oligomerization in Brīlsted Acidic Zeolites: Mechanistic Insights from Low-Temperature in Situ FTIR Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 7862-7870	3.4	48
172	Cu+(H2) and Na+(H2) adducts in exchanged ZSM-5 zeolites. <i>Chemical Communications</i> , 2004 , 2768-9	5.8	52
171	Shape selective conversion of 1,2,4-trimethylbenzene over different zeolite frameworks. <i>Studies in Surface Science and Catalysis</i> , 2004 , 154, 2281-2288	1.8	1
170	The role of Al in the structure and reactivity of iron centers in Fe-ZSM-5-based catalysts: a statistically based infrared study. <i>Journal of Catalysis</i> , 2003 , 215, 264-270	7.3	63
169	Activity and deactivation of Fe-MFI catalysts for benzene hydroxylation to phenol by N2O. <i>Journal of Catalysis</i> , 2003 , 214, 169-178	7.3	61
168	Characterization of isolated Ag cations in homoionic Ag-Y zeolites: A combined anomalous XRPD and EXAFS study. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2003 , 200, 155-159	1.2	37
167	Description of a flexible cell for in situ X-ray and far-IR characterization of the surface of powdered materials. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2003 , 200, 196-201	1.2	46
166	Anchoring Fe ions to amorphous and crystalline oxides: a means to tune the degree of Fe coordination. <i>ChemPhysChem</i> , 2003 , 4, 1073-8	3.2	23
165	In situ Characterization of Catalysts Active in Partial Oxidations: TS-1 and Fe-MFI Case Studies <i>ChemInform</i> , 2003 , 34, no		1
164	On the first stages of the ethylene polymerization on Cr2+/SiO2 Phillips catalyst: time and temperature resolved IR studies. <i>Journal of Molecular Catalysis A</i> , 2003 , 204-205, 527-534		42
163	Structural Determination of Copper Species on the Alumina-Supported Copper Chloride Catalyst: A Detailed EXAFS Study. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 5022-5030	3.4	49
162	Enhancement of the ETS-10 titanosilicate activity in the shape-selective photocatalytic degradation of large aromatic molecules by controlled defect production. <i>Journal of the American Chemical Society</i> , 2003 , 125, 2264-71	16.4	141

161	Interaction of CD3CN and Pyridine with the Ti(IV) Centers of TS-1 Catalysts: a Spectroscopic and Computational Study. <i>Langmuir</i> , 2003 , 19, 2155-2161	4	99
160	Temperature resolved FTIR spectroscopy of Cr2+/SiO2 catalysts: acetylene and methylacetylene oligomerisation. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 4414-4417	3.6	18
159	Determination of the oxidation and coordination state of copper on different Cu-based catalysts by XANES spectroscopy in situ or in operando conditions. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 450)2 ³ 4509	9 ¹⁵²
158	Thermal Reduction of Cu2+Mordenite and Re-oxidation upon Interaction with H2O, O2, and NO. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 7036-7044	3.4	135
157	Healing of defects in ETS-10 by selective UV irradiation: a Raman study. <i>Chemical Communications</i> , 2003 , 1514-1515	5.8	21
156	Resonance Raman effects in TS-1: the structure of Ti(IV) species and reactivity towards H2O, NH3 and H2O2: an in situ study. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 4390	3.6	90
155	Ti-chabazite as a model system of Ti(IV) in Ti-zeolites: A periodic approach. <i>Journal of Chemical Physics</i> , 2003 , 118, 10183-10194	3.9	37
154	Spectroscopic evidence for a persistent benzenium cation in zeolite H-beta. <i>Journal of the American Chemical Society</i> , 2003 , 125, 15863-8	16.4	155
153	The Chemistry of the Oxychlorination Catalyst: an In Situ, Time-Resolved XANES Study. <i>Angewandte Chemie</i> , 2002 , 114, 2447-2450	3.6	18
152	The chemistry of the oxychlorination catalyst: an in situ, time-resolved XANES study. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 2341-4	16.4	112
151	The Structure of the Peroxo Species in the TS-1 Catalyst as Investigated by Resonant Raman Spectroscopy. <i>Angewandte Chemie</i> , 2002 , 114, 4928-4931	3.6	22
150	The structure of the peroxo species in the TS-1 catalyst as investigated by resonant Raman spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 4734-7	16.4	139
149	IR spectroscopy of adsorbed NO as a useful tool for the characterisation of low concentrated Fe-silicalite catalysts. <i>Journal of Molecular Catalysis A</i> , 2002 , 182-183, 359-366		24
148	Calorimetric and IR spectroscopic study of the interaction of NH3 with variously prepared defective silicalites. <i>Applied Surface Science</i> , 2002 , 196, 56-70	6.7	55
147	Co-ordination and oxidation changes undergone by iron species in Fe-silicalite upon template removal, activation and interaction with N2O: an in situ X-ray absorption study. <i>Microchemical Journal</i> , 2002 , 71, 101-116	4.8	45
146	An in situ temperature dependent IR, EPR and high resolution XANES study on the NO/Cu+\(\mathbb{Z}\)SM-5 interaction. Chemical Physics Letters, 2002, 363, 389-396	2.5	91
145	Alumina-Supported Copper Chloride. <i>Journal of Catalysis</i> , 2002 , 205, 375-381	7.3	56
144	Evolution of Extraframework Iron Species in Fe Silicalite. <i>Journal of Catalysis</i> , 2002 , 208, 64-82	7.3	140

(2001-2002)

143	In Situ Characterization of Catalysts Active in Partial Oxidations: TS-1 and Fe-MFI Case Studies. <i>Topics in Catalysis</i> , 2002 , 21, 67-78	2.3	37
142	Reactivity of Ti(IV) sites in Ti-zeolites: An embedded cluster approach. <i>Journal of Chemical Physics</i> , 2002 , 117, 226-237	3.9	67
141	Vibrational and optical spectroscopic studies on copper-exchanged ferrierite. <i>Studies in Surface Science and Catalysis</i> , 2002 , 142, 199-206	1.8	8
140	A combined anomalous XRPD, EXAFS, IR, UV-Vis and photoluminescence study on isolated and clustered silver species in Y zeolite. <i>Studies in Surface Science and Catalysis</i> , 2002 , 142, 1963-1970	1.8	3
139	Zeolite characterization with spectroscopic methods. Studies in Surface Science and Catalysis, 2002, 3-1-	4 1.8	8
138	Effect of NH3 Adsorption on the Structural and Vibrational Properties of TS-1. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 7524-7526	3.4	42
137	Effect of Interaction with H2O and NH3 on the Vibrational, Electronic, and Energetic Peculiarities of Ti(IV) Centers TS-1 Catalysts: A Spectroscopic and Computational Study. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 9892-9905	3.4	96
136	Interaction between probe molecules and zeolites Physical Chemistry Chemical Physics, 2002, 4, 2424-2	2433	17
135	24-P-15-Acetylene and alkene oligomerization on ETS-10 having induced Br\(\text{B}\)ted acidity. <i>Studies in Surface Science and Catalysis</i> , 2001 , 274	1.8	2
134	Calorimetric and spectroscopic study of the coordinative unsaturation of copper(I) and silver(I) cations in ZSM-5 zeolite: Room temperature adsorption of NH3. <i>Thermochimica Acta</i> , 2001 , 379, 131-14	15 ^{2.9}	23
133	Rehydration mechanisms in zeolites: reversibility of TDII breaking and of tetrahedral cation migration in brewsterite. <i>Microporous and Mesoporous Materials</i> , 2001 , 42, 277-287	5.3	17
132	Alumina-Supported Copper Chloride. <i>Journal of Catalysis</i> , 2001 , 202, 279-295	7-3	73
131	Hydroxyls nests in defective silicalites and strained structures derived upon dehydroxylation: vibrational properties and theoretical modelling. <i>Topics in Catalysis</i> , 2001 , 15, 43-52	2.3	134
130	Interaction of N2, CO and NO with Cu-exchanged ETS-10: a compared FTIR study with other Cu-zeolites and with dispersed Cu2O. <i>Catalysis Today</i> , 2001 , 70, 91-105	5.3	76
129	Effect of Ti insertion in the silicalite framework on the vibrational modes of the structure: an ab initio, and vibrational study. <i>Studies in Surface Science and Catalysis</i> , 2001 , 140, 195-208	1.8	11
128	Surface structures of oxides and halides and their relationships to catalytic properties. <i>Advances in Catalysis</i> , 2001 , 265-397	2.4	61
127	Ti location in the MFI framework of Ti-Silicalite-1: a neutron powder diffraction study. <i>Journal of the American Chemical Society</i> , 2001 , 123, 2204-12	16.4	163
126	Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study. <i>Journal of the American Chemical Society</i> , 2001 , 123, 11409-19	16.4	318

125	Alkyne polymerization on the titanosilicate molecular sieve ETS-10. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 1228-1231	3.6	21
124	(CD3CN)2H+ adducts in anhydrous H3PW12O40: a FTIR study. <i>Physical Chemistry Chemical Physics</i> , 2001 , 3, 1345-1347	3.6	11
123	The Role of Isolated Sites in Heterogeneous Catalysis: Characterization and Modeling. <i>International Journal of Molecular Sciences</i> , 2001 , 2, 167-182	6.3	22
122	The CuCl2/Al2O3 Catalyst Investigated in Interaction with Reagents. <i>International Journal of Molecular Sciences</i> , 2001 , 2, 230-245	6.3	21
121	Structure of Homoleptic CuI(CO)3 Cations in CuI-Exchanged ZSM-5 Zeolite: An X-ray Absorption Study. <i>Angewandte Chemie</i> , 2000 , 112, 2222-2225	3.6	8
120	Structure of Homoleptic CuI(CO)3 Cations in CuI-Exchanged ZSM-5 Zeolite: An X-ray Absorption Study. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 2138-2141	16.4	86
119	Vibrational spectroscopy of H2, N2, CO and NO adsorbed on H, Li, Na, K-exchanged ferrierite. <i>Microporous and Mesoporous Materials</i> , 2000 , 34, 67-80	5.3	78
118	FTIR and UVIV is characterization of Fe-Silicalite. <i>Journal of Molecular Catalysis A</i> , 2000 , 158, 107-114		48
117	Vibrational spectroscopy of carbon monoxide and dinitrogen adsorbed on magnesium-exchanged ETS-10 molecular sieve. <i>Catalysis Letters</i> , 2000 , 66, 231-235	2.8	18
116	The IR spectroscopy of methane and hydrogen adsorbed on Æhromia. <i>Catalysis Letters</i> , 2000 , 68, 185-1	90 .8	5
116	The IR spectroscopy of methane and hydrogen adsorbed on Ethromia. <i>Catalysis Letters</i> , 2000 , 68, 185-1 Alumina-Supported Copper Chloride. <i>Journal of Catalysis</i> , 2000 , 189, 91-104	9 Q .8	5 8 ₇
115	Alumina-Supported Copper Chloride. <i>Journal of Catalysis</i> , 2000 , 189, 91-104	7-3	87
115 114	Alumina-Supported Copper Chloride. <i>Journal of Catalysis</i> , 2000 , 189, 91-104 Alumina-Supported Copper Chloride. <i>Journal of Catalysis</i> , 2000 , 189, 105-116 Polycarbonylic and polynitrosylic species in Cul-exchanged ZSM-5, #mordenite and Y zeolites:	7·3 7·3	8 ₇
115 114 113	Alumina-Supported Copper Chloride. <i>Journal of Catalysis</i> , 2000 , 189, 91-104 Alumina-Supported Copper Chloride. <i>Journal of Catalysis</i> , 2000 , 189, 105-116 Polycarbonylic and polynitrosylic species in Cul-exchanged ZSM-5, #mordenite and Y zeolites: comparison with homogeneous complexes. <i>Studies in Surface Science and Catalysis</i> , 2000 , 2915-2920 Interaction of CO and NH3 with noble metal cations dispersed in ZSM-5 zeolites. Spectroscopic and	7·3 7·3 1.8	87 55 18
115 114 113	Alumina-Supported Copper Chloride. <i>Journal of Catalysis</i> , 2000 , 189, 91-104 Alumina-Supported Copper Chloride. <i>Journal of Catalysis</i> , 2000 , 189, 105-116 Polycarbonylic and polynitrosylic species in Cul-exchanged ZSM-5, #mordenite and Y zeolites: comparison with homogeneous complexes. <i>Studies in Surface Science and Catalysis</i> , 2000 , 2915-2920 Interaction of CO and NH3 with noble metal cations dispersed in ZSM-5 zeolites. Spectroscopic and microcalorimetric investigation. <i>Studies in Surface Science and Catalysis</i> , 2000 , 130, 3261-3266 Stoichiometric and sodium-doped titanium silicate molecular sieve containing atomically defined DTiOTiOIthains: Quantum ab initio calculations, spectroscopic properties, and reactivity. <i>Journal</i>	7·3 7·3 1.8	87 55 18
115 114 113 112	Alumina-Supported Copper Chloride. <i>Journal of Catalysis</i> , 2000 , 189, 91-104 Alumina-Supported Copper Chloride. <i>Journal of Catalysis</i> , 2000 , 189, 105-116 Polycarbonylic and polynitrosylic species in Cul-exchanged ZSM-5, #mordenite and Y zeolites: comparison with homogeneous complexes. <i>Studies in Surface Science and Catalysis</i> , 2000 , 2915-2920 Interaction of CO and NH3 with noble metal cations dispersed in ZSM-5 zeolites. Spectroscopic and microcalorimetric investigation. <i>Studies in Surface Science and Catalysis</i> , 2000 , 130, 3261-3266 Stoichiometric and sodium-doped titanium silicate molecular sieve containing atomically defined DTiOTiOIthains: Quantum ab initio calculations, spectroscopic properties, and reactivity. <i>Journal of Chemical Physics</i> , 2000 , 112, 3859-3867 X-ray photoelectron spectroscopy and x-ray absorption near edge structure study of copper sites hosted at the internal surface of ZSM-5 zeolite: A comparison with quantitative and energetic data	7·3 7·3 1.8 1.8	87 55 18 5

(1998-2000)

107	XRD, XAS, and IR Characterization of Copper-Exchanged Y Zeolite. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 8641-8651	3.4	223
106	Oxidation States of Copper Ions in ZSM-5 Zeolites. A Multitechnique Investigation. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 4064-4073	3.4	218
105	Characterisation of defective silicalites. <i>Dalton Transactions RSC</i> , 2000 , 3921-3929		102
104	The vibrational spectroscopy of H2, N2, CO and NO adsorbed on the titanosilicate molecular sieve ETS-10. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 1649-1657	3.6	103
103	Well defined carbonyl complexes in Ag+- and Cu+-exchanged ZSM-5 zeolite: a comparison with homogeneous counterparts. <i>Journal of Molecular Catalysis A</i> , 1999 , 146, 97-106		43
102	A calorimetric, IR, XANES and EXAFS study of the adsorption of NH3 on Ti-silicalite as a function of the sample pre-treatment. <i>Microporous and Mesoporous Materials</i> , 1999 , 30, 67-76	5.3	53
101	Nitrosylic complexes in Ag(I)ISM-5: a comparison with Cu(I)ISM-5. <i>Microporous and Mesoporous Materials</i> , 1999 , 30, 129-135	5.3	24
100	Structural Characterization of Ti-Silicalite-1: A Synchrotron Radiation X-Ray Powder Diffraction Study. <i>Journal of Catalysis</i> , 1999 , 183, 222-231	7.3	103
99	EXAFS studies on MFI-type gallosilicate molecular sieves. <i>Catalysis Letters</i> , 1999 , 63, 213-216	2.8	32
98	Heterocycles oligomerization in acidic zeolites: a UV-visible and IR study. <i>Topics in Catalysis</i> , 1999 , 8, 27	79- <u>22</u> 92	28
98 97	Heterocycles oligomerization in acidic zeolites: a UV-visible and IR study. <i>Topics in Catalysis</i> , 1999 , 8, 27 Heterogeneity of Framework Ti(IV) in TiBilicalite as Revealed by the Adsorption of NH3. Combined Calorimetric and Spectroscopic Study <i>Langmuir</i> , 1999 , 15, 5753-5764	79 .2.9 2 4	28 69
	Heterogeneity of Framework Ti(IV) in TiBilicalite as Revealed by the Adsorption of NH3. Combined		
97	Heterogeneity of Framework Ti(IV) in TiBilicalite as Revealed by the Adsorption of NH3. Combined Calorimetric and Spectroscopic Study Langmuir, 1999, 15, 5753-5764 Cation Barbon stretching vibration of adducts formed upon CO adsorption on alkaline zeolites.	4	69
97 96	Heterogeneity of Framework Ti(IV) in TiBilicalite as Revealed by the Adsorption of NH3. Combined Calorimetric and Spectroscopic Study Langmuir, 1999, 15, 5753-5764 Cation Barbon stretching vibration of adducts formed upon CO adsorption on alkaline zeolites. Physical Chemistry Chemical Physics, 1999, 1, 4139-4140 Evidence of very strong [2[NO)] overtones when adsorbing NO in Cul, II-exchanged Y zeolites.	3.6	69
97 96 95	Heterogeneity of Framework Ti(IV) in TiBilicalite as Revealed by the Adsorption of NH3. Combined Calorimetric and Spectroscopic Study Langmuir, 1999, 15, 5753-5764 Cation Barbon stretching vibration of adducts formed upon CO adsorption on alkaline zeolites. Physical Chemistry Chemical Physics, 1999, 1, 4139-4140 Evidence of very strong [2[NO)] overtones when adsorbing NO in Cul, II-exchanged Y zeolites. Physical Chemistry Chemical Physics, 1999, 1, 2033-2035 Spectroscopic study in the UV-Vis, near and mid IR of cationic species formed by interaction of thiophene, dithiophene and terthiophene with the zeolite H-Y. Physical Chemistry Chemical Physics,	3.6 3.6	69 30 5
97 96 95 94	Heterogeneity of Framework Ti(IV) in TiBilicalite as Revealed by the Adsorption of NH3. Combined Calorimetric and Spectroscopic Study[] Langmuir, 1999, 15, 5753-5764 CationBarbon stretching vibration of adducts formed upon CO adsorption on alkaline zeolites. Physical Chemistry Chemical Physics, 1999, 1, 4139-4140 Evidence of very strong [2[NO)] overtones when adsorbing NO in Cul,II-exchanged Y zeolites. Physical Chemistry Chemical Physics, 1999, 1, 2033-2035 Spectroscopic study in the UV-Vis, near and mid IR of cationic species formed by interaction of thiophene, dithiophene and terthiophene with the zeolite H-Y. Physical Chemistry Chemical Physics, 1999, 1, 561-569 Mono-, Di-, and Tricarbonylic Species in Copper(I)-Exchanged Zeolite ZSM-5: Comparison with	3.6 3.6 3.6	6930536
9796959493	Heterogeneity of Framework Ti(IV) in TiBilicalite as Revealed by the Adsorption of NH3. Combined Calorimetric and Spectroscopic Study[] <i>Langmuir</i> , 1999 , 15, 5753-5764 CationBarbon stretching vibration of adducts formed upon CO adsorption on alkaline zeolites. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 4139-4140 Evidence of very strong [2[NO)] overtones when adsorbing NO in Cul,II-exchanged Y zeolites. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 2033-2035 Spectroscopic study in the UV-Vis, near and mid IR of cationic species formed by interaction of thiophene, dithiophene and terthiophene with the zeolite H-Y. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 561-569 Mono-, Di-, and Tricarbonylic Species in Copper(I)-Exchanged Zeolite ZSM-5: Comparison with Homogeneous Copper(I) Carbonylic Structures. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 3833-3844	3.6 3.6 3.4	693053692

89	Surface acidity and basicity: General concepts. <i>Catalysis Today</i> , 1998 , 41, 169-177	5.3	125
88	FTIR study of the interaction of CO with pure and silica-supported copper(I) oxide. <i>Surface Science</i> , 1998 , 411, 272-285	1.8	93
87	XANES, EXAFS and FTIR characterization of copper-exchanged mordenite. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1998 , 94, 1519-1525		82
86	HCl and HClBase Adducts in Silicalite Channels as Models of AcidBase Interactions in Zeolites:□An IR and Theoretical Study. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 10753-10764	3.4	14
85	IR spectroscopy of CH3CNE Cladducts in silicalite channels A model system for the study of acidEase reactions in zeolites. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1998 , 94, 309-314		10
84	Evidence of the Presence of Two Different Framework Ti(IV) Species in TiBilicalite-1 in Vacuo Conditions: an EXAFS and a Photoluminescence Study. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 6382	- <i>6</i> 3∕90	162
83	Structural and optical investigation of InAsxP1\(\mathbb{B}\)/InP strained superlattices. <i>Journal of Applied Physics</i> , 1998 , 83, 1058-1077	2.5	37
82	Surface properties of Cu2O/MCM-41 mesoporous systems. <i>Studies in Surface Science and Catalysis</i> , 1998 , 343-350	1.8	24
81	XRPD Study on Cation Location in Na-Rb-Y Zeolite at the ESRF under Carefully Controlled Atmospheres: Vacuum, H2O, NH3. <i>Materials Science Forum</i> , 1998 , 278-281, 797-802	0.4	3
80	Quantum-size effects in the titanosilicate molecular sieve. <i>Applied Physics Letters</i> , 1997 , 71, 2319-2321	3.4	93
79	Propene oligomerization on H-mordenite: Hydrogen-bondinginteraction, chain initiation, propagation and hydrogen transferstudied by temperature-programmed FTIR and UV\(\mathbb{U}\) ISspectroscopies. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1243-1249		77
78	Repulsive and attractive interactions between Brnsted sites and hydrocarbon species with partial carbocationic character in restricted spaces: comparison of IR results and abinitiocalculations. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3893-3898		11
77	FTIR study of CO adsorbed at low temperature on zeolite L. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1997 , 93, 189-191		17
76	Vibrational Spectroscopy of NH4+Ions in Zeolitic Materials:□An IR Study. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 10128-10135	3.4	209
75	XAFS, IR, and UVII is Study of the Cul Environment in Cul-ZSM-5. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 344-360	3.4	303
74	Acidic Properties of H陞eolite As Probed by Bases with Proton Affinity in the 118位04 kcal mol-1 Range: A FTIR Investigation. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 4740-4751	3.4	187
73	Cation Location in Dehydrated NaRb\(Zeolite: An XRD and IR Study. Journal of Physical Chemistry B, 1997, 101, 10653-10660	3.4	107
72	A surface study of monoclinic zirconia (m-ZrO2). <i>Surface Science</i> , 1997 , 377-379, 50-55	1.8	42

XAFS, IR, Raman and UV-Vis Characterization of Framework Ti(IV) Species in Ti-Silicalites. *European Physical Journal Special Topics*, **1997**, 7, C2-851-C2-853

70	Evolution of Fe3+from Framework to Extra-Framework Species in Fe-Silicate as a Function of the Template Burning Temperature. <i>European Physical Journal Special Topics</i> , 1997 , 7, C2-907-C2-908		1
69	Catalyst characterization: characterization techniques. <i>Catalysis Today</i> , 1997 , 34, 307-327	5.3	27
68	Catalyst characterization: applications. <i>Catalysis Today</i> , 1997 , 34, 329-352	5.3	4
67	Surface characterization of monoclinic ZrO2. <i>Applied Surface Science</i> , 1997 , 115, 53-65	6.7	63
66	Cul-Y and Cull-Y zeolites: a XANES, EXAFS and visible-NIR study. <i>Chemical Physics Letters</i> , 1997 , 269, 500)- <u>5.</u> @8	75
65	IR spectroscopy of neutral and ionic hydrogen-bonded complexes formed upon interaction of CH3OH, C2H5OH, (CH3)2O, (C2H5)2O and C4H8O with H-Y, H-ZSM-5 and H-mordenite: comparison with analogous adducts formed on the H-Nafion superacidic membrane. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 4863-4875		93
64	Interaction of Pyridine with Acidic (H-ZSM5, H-#H-MORD Zeolites) and Superacidic (H-Nafion Membrane) Systems: An IR Investigation. <i>Langmuir</i> , 1996 , 12, 930-940	4	193
63	Modelling of £Cr2O3 and ZnO crystal morphology and its relation to the vibrational spectra of adsorbed CO. <i>Faraday Discussions</i> , 1996 , 105, 119-138	3.6	22
62	UV reflectance and FTIR spectroscopic studies of CO adsorption and reaction on lanthanum oxide. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 4675		20
61	FTIR Investigation of the Formation of Neutral and Ionic Hydrogen-Bonded Complexes by Interaction of H-ZSM-5 and H-Mordenite with CH3CN and H2O: Comparison with the H-NAFION Superacidic System. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 16584-16599		132
60	Structure and Reactivity of Framework and Extraframework Iron in Fe-Silicalite as Investigated by Spectroscopic and Physicochemical Methods. <i>Journal of Catalysis</i> , 1996 , 158, 486-501	7.3	503
59	Infrared studies of the interaction of carbon monoxide and dinitrogen with ferrisilicate MFI-type zeolites. <i>Catalysis Letters</i> , 1996 , 42, 25-33	2.8	55
58	IR studies of CO and NO adsorbed on well characterized oxide single microcrystals. <i>Catalysis Today</i> , 1996 , 27, 403-435	5.3	106
57	Structural characterization of Ti centres in Ti-silicalite and reaction mechanisms in cyclohexanone ammoximation. <i>Catalysis Today</i> , 1996 , 32, 97-106	5.3	165
56	Reply to Comments on N 2 Adsorption at 77 K on H-Mordenite and Alkali-Metal-Exchanged Mordenites: An IR Study (<i>The Journal of Physical Chemistry</i> , 1996 , 100, 18883-18883		5
55	XANES study of Ti and Fe substituted silicalites in presence and in absence of NH3 and comparison with UV-vis, IR and Raman spectra. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1995 , 97, 23-27	1.2	21
54	Bond lengths at buried InAsP/InP interfaces in InP/InGaAs multi quantum wells. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1995 , 97, 387-391	1.2	7

53	N2 Adsorption at 77 K on H-Mordenite and Alkali-Metal-Exchanged Mordenites: An IR Study. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 11167-11177		101
52	Stretching frequencies of cation-CO adducts in alkali-metal exchanged zeolites: An elementary electrostatic approach. <i>Journal of Chemical Physics</i> , 1995 , 103, 3158-3165	3.9	87
51	Interaction of CO2, H2O, CH3OH, (CH3)2O, CH3N, H2S, (CH3)2CO, NH3 and Py with Bronsted acid sites of H-ZSM-5: Comparison of the IR manifestation. <i>Studies in Surface Science and Catalysis</i> , 1995 , 104	1-105	4
50	Reply to Comment on "Symmetry and Cluster Size Effects in XANES Spectra". <i>The Journal of Physical Chemistry</i> , 1995 , 99, 16500-16500		2
49	Fourier-Transform Infrared Study of CO Adsorbed at 77 K on H-Mordenite and Alkali-Metal-Exchanged Mordenites. <i>Langmuir</i> , 1995 , 11, 527-533	4	138
48	Formation of Cul N 2 adducts at 298 and 77 K in Cul-ZSM-5: an FTIR investigation. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 3285-3290		77
47	Atom pair potential for molecular dynamics simulations of structural and dynamical properties of aluminosilicates: test on silicalite and anhydrous Na-A and Ca-A zeolites and comparison with experimental data. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 525		35
46	Interaction of H2O, CH3OH, (CH3)2O, CH3CN, and Pyridine with the Superacid Perfluorosulfonic Membrane Nafion: An IR and Raman Study. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 11937-11951		210
45	Host- guest interactions in zeolite cavities. Studies in Surface Science and Catalysis, 1995, 97, 213-222	1.8	20
44	Orthorhombic and monoclinic silicalites: structure, morphology, vibrational properties and crystal defects <i>Studies in Surface Science and Catalysis</i> , 1994 , 84, 559-566	1.8	34
43	Local structural investigation of buried InAsxP1½/InP interfaces. <i>Journal of Applied Physics</i> , 1994 , 76, 4581-4586	2.5	14
42	XAFS study of Ti-silicalite: structure of framework Ti(IV) in presence and in absence of reactive molecules (H2O, NH3). <i>Catalysis Letters</i> , 1994 , 26, 195-208	2.8	88
41	Spectroscopic Studies (UV-vis and FTIR) of CO and Ethene Molecular Complexes and of Ethene Oligomerization on .alphaCr2O3 Surfaces. <i>Langmuir</i> , 1994 , 10, 3094-3104	4	26
40	Comparative IR-spectroscopic study of low-temperature H2 and CO adsorption on Na zeolites. Journal of the Chemical Society, Faraday Transactions, 1994 , 90, 3367-3372		105
39	IR study of ethene and propene oligomerization on H-ZSM-5: hydrogen-bonded precursor formation, initiation and propagation mechanisms and structure of the entrapped oligomers. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1994 , 90, 2827		126
38	Low-Temperature Fourier Transform Infrared Study of the Interaction of CO with Cations in Alkali-Metal Exchanged ZSM-5 Zeolites. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 9577-9582		128
37	Cu(I)-ZSM-5 zeolites prepared by reaction of H-ZSM-5 with gaseous CuCl: Spectroscopic characterization and reactivity towards carbon monoxide and nitric oxide. <i>Applied Catalysis B: Environmental</i> , 1994 , 3, 151-172	21.8	257
36	Extended x-ray absorption fine structure investigation on buried InAsP/InP interfaces. <i>Applied Physics Letters</i> , 1994 , 64, 1430-1432	3.4	32

35	XAFS Study of Ti-Silicalite: Structure of Framework Ti(IV) in the Presence and Absence of Reactive Molecules (H2O, NH3) and Comparison with Ultraviolet-Visible and IR Results. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 4125-4132		336
34	Selective Oxidation of Ammonia to Hydroxylamine with Hydrogen Peroxide on Titanium Based Catalysts. <i>Studies in Surface Science and Catalysis</i> , 1994 , 82, 541-550	1.8	65
33	Acetylene, methylacetylene and ethylacetylene polymerization on H-ZSM5: a spectroscopic study. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1993 , 89, 1843-1855		68
32	Fourier-transform infrared and Raman spectra of pure and Al-, B-, Ti- and Fe-substituted silicalites: stretching-mode region. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1993 , 89, 4123		238
31	Structure of the surface sites of EAl2O3 as determined by high-resolution transmission electron microscopy, computer modelling and infrared spectroscopy of adsorbed CO. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1993 , 89, 3483-3489		70
30	Mechanisms of methanol adsorption on silicalite and silica: IR spectra and ab-initio calculations. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 11979-11986		72
29	Ammoximation of Cyclohexanone on Titanium Silicalite: Investigation of the Reaction Mechanism. <i>Studies in Surface Science and Catalysis</i> , 1993 , 75, 719-729	1.8	47
28	Revisiting the ECr2O3/CO interaction: an FTIR and HRTEM study. <i>Journal of Electron Spectroscopy and Related Phenomena</i> , 1993 , 64-65, 307-313	1.7	19
27	Interaction of CO with Ecr2O3 surface: a FTIR and HRTEM study. <i>Chemical Physics</i> , 1993 , 177, 547-560	2.3	28
26	Band resolution techniques and Fourier transform infrared spectra of adsorbed species. <i>Vibrational Spectroscopy</i> , 1993 , 4, 273-284	2.1	27
25	Infrared study of carbon monoxide adsorption at 77 K on faujasites and ZSM-5 zeolites. <i>Vibrational Spectroscopy</i> , 1993 , 5, 69-74	2.1	57
24	Interaction of chromocene with MgO and reactivity of the adsorbed species towards CO: An IR study. <i>Spectrochimica Acta Part A: Molecular Spectroscopy</i> , 1993 , 49, 1235-1245		1
23	MINUIT subroutine for spectra deconvolution. <i>Computer Physics Communications</i> , 1993 , 74, 119-141	4.2	22
22	Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1992 , 88, 2959-2969		271
21	Silicalite characterization. 1. Structure, adsorptive capacity, and IR spectroscopy of the framework and hydroxyl modes. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 4985-4990		137
20	CO adsorption at 77 K on CoO/MgO and NiO/MgO solid solutions: a Fourier-transform infrared study. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1992 , 88, 291		63
19	Silicalite characterization. 2. IR spectroscopy of the interaction of carbon monoxide with internal and external hydroxyl groups. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 4991-4997		268
18	Lateral interactions in CO adlayers on prismatic ZnO faces: a FTIR and HRTEM study. <i>Surface Science</i> , 1992 , 276, 281-298	1.8	93

17	Cr(II) and Cr(III) ions grafted at internal nests of a pentasilic zeolite (silicalite): characterization and formation of polycarbonylic, polynitrosylic, and mixed species by interaction with CO and NO. <i>Journal of Molecular Catalysis</i> , 1992 , 74, 175-184		39
16	DRS UV-Vis and EPR spectroscopy of hydroperoxo and superoxo complexes in titanium silicalite. <i>Catalysis Letters</i> , 1992 , 16, 109-115	2.8	295
15	Well defined CuI(NO), CuI(NO)2 and CuII(NO)X (X = Oland/or NO 12) complexes in CuI-ZSMS prepared by interaction of H-ZSM5 with gaseous CuCl. <i>Catalysis Letters</i> , 1992 , 13, 39-44	2.8	162
14	Low temperature CO adsorption on Na-ZSM-5 zeolites: An FTIR investigation. <i>Journal of Catalysis</i> , 1992 , 137, 179-185	7.3	124
13	Auger electron spectroscopy study of cleaved and sputter-etched In0.53Ga0.47As surfaces. <i>Thin Solid Films</i> , 1991 , 197, 179-186	2.2	6
12	FTIR study of the interaction of Re2(CO)10 with Na-Y zeolite. <i>Journal of Molecular Catalysis</i> , 1991 , 70, 43-52		7
11	Interaction of metallocenes with oxidic surfaces. <i>Materials Chemistry and Physics</i> , 1991 , 29, 261-269	4.4	5
10	Ionic clusters in zeolites formed by interaction with sodium solutions in liquid ammonia. <i>Catalysis Letters</i> , 1991 , 8, 375-378	2.8	10
9	Framework and Extraframework Ti in Titanium-Silicalite: Investigation by Means of Physical Methods. <i>Studies in Surface Science and Catalysis</i> , 1991 , 69, 251-258	1.8	134
8	IR Spectra of CO Adsorbed at Low Temperature (77 K) On Titaniumsilicalite, H-ZSM5 and Silicalite. <i>Studies in Surface Science and Catalysis</i> , 1991 , 671-680	1.8	43
7	Interaction of Cr(CO)6 with Na\$z.sbnd;Y zeolite: Effect of co-adsorbed ammonia. <i>Journal of Catalysis</i> , 1990 , 125, 568-570	7.3	13
6	On the formation of cyclopentadienyl anions at the surface of mgo by interaction with cyclopentadiene and their reaction with H2 to give surface hydrides. <i>Journal of Molecular Catalysis</i> , 1989 , 49, 187-194		3
5	Interaction of chromocene with the silica surface, and structure of the active species for ethene polymerization. <i>Faraday Discussions of the Chemical Society</i> , 1989 , 87, 149		26
4	CHAPTER 5:Characterization of MOFs. 2. Long and Local Range Order Structural Determination of MOFs by Combining EXAFS and Diffraction Techniques. <i>RSC Catalysis Series</i> ,143-208	0.3	8
3	CHAPTER 4:Characterization of MOFs. 1. Combined Vibrational and Electronic Spectroscopies. <i>RSC Catalysis Series</i> ,76-142	0.3	18
2	Model Systems771-908		
7	Single Site Catalyst for Partial Oxidation Peaction: TS-1 Case Study37-68		26