
Bettina Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8315961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Susceptibility of White-Tailed Deer (Odocoileus virginianus) to SARS-CoV-2. Journal of Virology, 2021, 95, .	1.5	192
2	Recurrent airway obstruction (RAO) in horses is characterized by IFN-γ and IL-8 production in bronchoalveolar lavage cells. Veterinary Immunology and Immunopathology, 2003, 96, 83-91.	0.5	122
3	Development of a bead-based multiplex assay for simultaneous quantification of cytokines in horses. Veterinary Immunology and Immunopathology, 2009, 127, 242-248.	0.5	107
4	The Complete Map of the Ig Heavy Chain Constant Gene Region Reveals Evidence for Seven IgG Isotypes and for IgD in the Horse. Journal of Immunology, 2004, 173, 3230-3242.	0.4	93
5	The different effector function capabilities of the seven equine IgG subclasses have implications for vaccine strategies. Molecular Immunology, 2008, 45, 818-827.	1.0	93
6	Comparison of the efficacy of inactivated combination and modified-live virus vaccines against challenge infection with neuropathogenic equine herpesvirus type 1 (EHV-1). Vaccine, 2006, 24, 3636-3645.	1.7	92
7	Immunoglobulins and immunoglobulin genes of the horse. Developmental and Comparative Immunology, 2006, 30, 155-164.	1.0	90
8	Leukocyte-Reduced Platelet-Rich Plasma Normalizes Matrix Metabolism in Torn Human Rotator Cuff Tendons. American Journal of Sports Medicine, 2015, 43, 2898-2906.	1.9	88
9	Monoclonal anti-equine IgE antibodies with specificity for different epitopes on the immunoglobulin heavy chain of native IgE. Veterinary Immunology and Immunopathology, 2003, 92, 45-60.	0.5	86
10	IgE and IgG antibodies in skin allergy of the horse. Veterinary Research, 2006, 37, 813-825.	1.1	82
11	Time-dependent alterations in gene expression of interleukin-8 in the bronchial epithelium of horses with recurrent airway obstruction. American Journal of Veterinary Research, 2006, 67, 669-677.	0.3	69
12	Evaluation of immune responses following infection of ponies with an EHV-1 ORF1/2 deletion mutant. Veterinary Research, 2011, 42, 23.	1.1	55
13	Interferon-gamma, interleukin-4 and interleukin-10 production by T helper cells reveals intact Th1 and regulatory T _R 1 cell activation and a delay of the Th2 cell response in equine neonates and foals. Veterinary Research, 2010, 41, 47.	1.1	54
14	Split immunological tolerance to trophoblast. International Journal of Developmental Biology, 2010, 54, 445-455.	0.3	47
15	Characterization of monoclonal antibodies to equine interleukin-10 and detection of T regulatory 1 cells in horses. Veterinary Immunology and Immunopathology, 2008, 122, 57-64.	0.5	45
16	lgE in horses: Occurrence in health and disease. Veterinary Immunology and Immunopathology, 2009, 132, 21-30.	0.5	45
17	Horse cytokine/IgG fusion proteins – mammalian expression of biologically active cytokines and a system to verify antibody specificity to equine cytokines. Veterinary Immunology and Immunopathology, 2005, 105, 1-14.	0.5	44
18	Monoclonal antibodies to equine CD14. Veterinary Immunology and Immunopathology, 2010, 138, 149-153.	0.5	43

#	Article	IF	CITATIONS
19	Antibodies to Borrelia burgdorferi OspA, OspC, OspF, and C6 Antigens as Markers for Early and Late Infection in Dogs. Vaccine Journal, 2012, 19, 527-535.	3.2	42
20	Immune protection against reinfection with nonprimate hepacivirus. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2430-E2439.	3.3	42
21	A comparison of intradermal testing and detection of allergen-specific immunoglobulin E in serum by enzyme-linked immunosorbent assay in horses affected with skin hypersensitivity. Veterinary Immunology and Immunopathology, 2007, 120, 160-167.	0.5	40
22	Development of a multiplex assay for the detection of antibodies to Borrelia burgdorferi in horses and its validation using Bayesian and conventional statistical methods. Veterinary Immunology and Immunopathology, 2011, 144, 374-381.	0.5	40
23	Immunological Correlates of Vaccination and Infection for Equine Herpesvirus 1. Vaccine Journal, 2012, 19, 235-241.	3.2	38
24	A fluorescent bead-based multiplex assay for the simultaneous detection of antibodies to B. burgdorferi outer surface proteins in canine serum. Veterinary Immunology and Immunopathology, 2011, 140, 190-198.	0.5	37
25	Monoclonal antibodies to equine CD23 identify the low-affinity receptor for IgE on subpopulations of IgM+ and IgG1+ B-cells in horses. Veterinary Immunology and Immunopathology, 2012, 146, 125-134.	0.5	37
26	Equine herpesvirus type-1 modulates CCL2, CCL3, CCL5, CXCL9, and CXCL10 chemokine expression. Veterinary Immunology and Immunopathology, 2011, 140, 266-274.	0.5	36
27	Infection of peripheral blood mononuclear cells with neuropathogenic equine herpesvirus type-1 strain Ab4 reveals intact interferon-α induction and induces suppression of anti-inflammatory interleukin-10 responses in comparison to other viral strains. Veterinary Immunology and Immunopathology, 2011, 143, 116-124.	0.5	36
28	Diagnosis of Borreliaâ€associated uveitis in two horses. Veterinary Ophthalmology, 2012, 15, 398-405.	0.6	35
29	Effects of in vitro exposure to hay dust on expression of interleukin-17, -23, -8, and -1β and chemokine (C-X-C motif) ligand 2 by pulmonary mononuclear cells isolated from horses chronically affected with recurrent airway disease. American Journal of Veterinary Research, 2007, 68, 1361-1369.	0.3	34
30	Subpopulations of equine blood lymphocytes expressing regulatory T cell markers. Veterinary Immunology and Immunopathology, 2011, 140, 90-101.	0.5	34
31	A monoclonal antibody to equine interleukin-4. Veterinary Immunology and Immunopathology, 2006, 110, 363-367.	0.5	33
32	Sensitization of skin mast cells with IgE antibodies to Culicoides allergens occurs frequently in clinically healthy horses. Veterinary Immunology and Immunopathology, 2009, 132, 53-61.	0.5	33
33	Genomic Analysis and mRNA Expression of Equine Type I Interferon Genes. Journal of Interferon and Cytokine Research, 2013, 33, 746-759.	0.5	33
34	Reduced incidence of insect-bite hypersensitivity in Icelandic horses is associated with a down-regulation of interleukin-4 by interleukin-10 and transforming growth factor-β1. Veterinary Immunology and Immunopathology, 2008, 122, 65-75.	0.5	32
35	Culicoides obsoletus extract relevant for diagnostics of insect bite hypersensitivity in horses. Veterinary Immunology and Immunopathology, 2012, 149, 245-254.	0.5	32
36	Evolution of the six horse IGHC genes and corresponding immunoglobulin gamma heavy chains. Immunogenetics, 2002, 54, 353-364.	1.2	31

#	Article	IF	CITATIONS
37	A histamine release assay to identify sensitization to Culicoides allergens in horses with skin hypersensitivity. Veterinary Immunology and Immunopathology, 2008, 126, 302-308.	0.5	31
38	Third International Havemeyer Workshop on Equine Herpesvirus <i>type 1</i> . Equine Veterinary Journal, 2012, 44, 513-517.	0.9	29
39	Production of seven monoclonal equine immunoglobulins isotyped by multiplex analysis. Veterinary Immunology and Immunopathology, 2013, 153, 187-193.	0.5	29
40	Monoclonal antibodies to equine IgM improve the sensitivity of West Nile virus-specific IgM detection in horses. Veterinary Immunology and Immunopathology, 2008, 122, 46-56.	0.5	27
41	Generation and characterization of monoclonal antibodies to equine CD16. Veterinary Immunology and Immunopathology, 2012, 146, 135-142.	0.5	27
42	Kinetics of plasma procalcitonin, soluble CD14, CCL2 and IL-10 after a sublethal infusion of lipopolysaccharide in horses. Veterinary Immunology and Immunopathology, 2017, 184, 29-35.	0.5	27
43	Comparison of TGF-beta 1 concentrations in bronchoalveolar fluid of horses affected with heaves and of normal controls. Veterinary Immunology and Immunopathology, 2004, 101, 133-141.	0.5	26
44	Increased IL-4 and decreased regulatory cytokine production following relocation of Icelandic horses from a high to low endoparasite environment. Veterinary Immunology and Immunopathology, 2010, 133, 40-50.	0.5	26
45	Antibodies to <scp>OspC</scp> , <scp>OspF</scp> and <scp>C6</scp> antigens as indicators for infection with <i>Borrelia burgdorferi</i> in horses. Equine Veterinary Journal, 2013, 45, 533-537.	0.9	26
46	Expression and characterisation of equine interleukin 2 and interleukin 4. Veterinary Immunology and Immunopathology, 2000, 77, 243-256.	0.5	25
47	Live-attenuated recombinant equine herpesvirus type 1 (EHV-1) induces a neutralizing antibody response against West Nile virus (WNV). Virus Research, 2007, 125, 69-78.	1.1	25
48	Maternal T-lymphocytes in equine colostrum express a primarily inflammatory phenotype. Veterinary Immunology and Immunopathology, 2014, 161, 141-150.	0.5	25
49	Occurrence of IgE in foals: Evidence for transfer of maternal IgE by the colostrum and late onset of endogenous IgE production in the horse. Veterinary Immunology and Immunopathology, 2006, 110, 269-278.	0.5	24
50	West Nile virus–specific immunoglobulin isotype responses in vaccinated and infected horses. American Journal of Veterinary Research, 2015, 76, 92-100.	0.3	24
51	Organization of the Equine Immunoglobulin Heavy Chain Constant Region Genes; III.Alignment of cN, cl², cl̂µ and cl̂± Genes. Immunobiology, 1998, 199, 105-118.	0.8	23
52	Nucleotide sequence and restriction fragment length polymorphisms of the equine Cε gene. Veterinary Immunology and Immunopathology, 2001, 82, 193-202.	0.5	23
53	Equine immunology: offspring of the serum horse. Trends in Immunology, 2002, 23, 223-225.	2.9	23
54	Organization of the equine immunoglobulin constant heavy chain genes I. cε and cα genes. Veterinary Immunology and Immunopathology, 1997, 60, 1-13.	0.5	20

Bettina Wagner

#	Article	IF	CITATIONS
55	Monoclonal antibodies to equine interferon-α (IFN-α): New tools to neutralize IFN-activity and to detect secreted IFN-α. Veterinary Immunology and Immunopathology, 2008, 125, 315-325.	0.5	20
56	Differential Gene Expression Profiles and Selected Cytokine Protein Analysis of Mediastinal Lymph Nodes of Horses with Chronic Recurrent Airway Obstruction (RAO) Support an Interleukin-17 Immune Response. PLoS ONE, 2015, 10, e0142622.	1.1	20
57	Mesenchymal stromal cellâ€ s ecreted CCL2 promotes antibacterial defense mechanisms through increased antimicrobial peptide expression in keratinocytes. Stem Cells Translational Medicine, 2021, 10, 1666-1679.	1.6	20
58	Development and characterization of mouse monoclonal antibodies reactive with chicken interleukin-2 receptor αlpha chain (CD25). Veterinary Immunology and Immunopathology, 2011, 144, 396-404.	0.5	19
59	Comparison of effectiveness of cefovecin, doxycycline, and amoxicillin for the treatment of experimentally induced early Lyme borreliosis in dogs. BMC Veterinary Research, 2015, 11, 163.	0.7	19
60	Serological responses and clinical outcome after vaccination of mares and foals with equine herpesvirus type 1 and 4 (EHV-1 and EHV-4) vaccines. Veterinary Microbiology, 2012, 160, 9-16.	0.8	18
61	Neonatal Immunization with a Single IL-4/Antigen Dose Induces Increased Antibody Responses after Challenge Infection with Equine Herpesvirus Type 1 (EHV-1) at Weanling Age. PLoS ONE, 2017, 12, e0169072.	1.1	18
62	Longitudinal analysis of allergenâ€specific IgE and IgG subclasses as potential predictors of insect bite hypersensitivity following first exposure to <i>Culicoides</i> in Icelandic horses. Veterinary Dermatology, 2018, 29, 51.	0.4	18
63	An Equine Herpesvirus Type 1 (EHV-1) Ab4 Open Reading Frame 2 Deletion Mutant Provides Immunity and Protection from EHV-1 Infection and Disease. Journal of Virology, 2019, 93, .	1.5	18
64	Induction of interleukin-4 production in neonatal IgE+ cells after crosslinking of maternal IgE. Developmental and Comparative Immunology, 2010, 34, 436-444.	1.0	17
65	Intranasal IgG4/7 antibody responses protect horses against equid herpesvirus-1 (EHV-1) infection including nasal virus shedding and cell-associated viremia. Virology, 2019, 531, 219-232.	1.1	17
66	Characterization of the horse (Equus caballus) IGHA gene. Immunogenetics, 2003, 55, 552-560.	1.2	16
67	Multispectral fluorescence-activated cell sorting of B and T cell subpopulations from equine peripheral blood. Veterinary Immunology and Immunopathology, 2018, 199, 22-31.	0.5	16
68	The deletion of the ORF1 and ORF71 genes reduces virulence of the neuropathogenic EHV-1 strain Ab4 without compromising host immunity in horses. PLoS ONE, 2018, 13, e0206679.	1.1	16
69	Comparison of three clinical scoring systems for Culicoides hypersensitivity in a herd of Icelandic horses. Veterinary Dermatology, 2019, 30, 536.	0.4	16
70	Humoral and Cell-Mediated Immune Response, and Growth Factor Synthesis After Direct Intraarticular Injection of rAAV2-IGF-I and rAAV5-IGF-I in the Equine Middle Carpal Joint. Human Gene Therapy, 2015, 26, 161-171.	1.4	15
71	C-C motif chemokine ligand (CCL) production in equine peripheral blood mononuclear cells identified by newly generated monoclonal antibodies. Veterinary Immunology and Immunopathology, 2018, 204, 28-39.	0.5	15
72	Early detection of Mycobacterium avium subsp. paratuberculosis infection in cattle with multiplex-bead based immunoassays. PLoS ONE, 2017, 12, e0189783.	1.1	15

Bettina Wagner

#	Article	IF	CITATIONS
73	Development and characterization of mouse monoclonal antibodies reactive with chicken CD83. Veterinary Immunology and Immunopathology, 2012, 145, 527-533.	0.5	14
74	Cytokine production and proliferation upon in vitro oligodeoxyribonucleotide stimulation of equine peripheral blood mononuclear cells. Veterinary Immunology and Immunopathology, 2012, 146, 113-124.	0.5	14
75	Barley produced Culicoides allergens are suitable for monitoring the immune response of horses immunized with E. coli expressed allergens. Veterinary Immunology and Immunopathology, 2018, 201, 32-37.	0.5	14
76	MHC haplotype diversity in Icelandic horses determined by polymorphic microsatellites. Genes and Immunity, 2019, 20, 660-670.	2.2	14
77	Development and characterization of mouse monoclonal antibodies reactive with chicken CD80. Comparative Immunology, Microbiology and Infectious Diseases, 2011, 34, 273-279.	0.7	13
78	Protective Effects of Passively Transferred Merozoite-Specific Antibodies against Theileria equi in Horses with Severe Combined Immunodeficiency. Vaccine Journal, 2012, 19, 100-104.	3.2	13
79	Generation and characterization of monoclonal antibodies to equine NKp46. Veterinary Immunology and Immunopathology, 2012, 147, 60-68.	0.5	13
80	Changes in Borrelia burgdorferi ELISA antibody over time in both antibiotic treated and untreated horses. Acta Veterinaria Hungarica, 2012, 60, 421-429.	0.2	12
81	Equine Mesenchymal Stromal Cells from Different Sources Efficiently Differentiate into Hepatocyte-Like Cells. Tissue Engineering - Part C: Methods, 2016, 22, 596-607.	1.1	12
82	Safety Profile of a Virus-Like Particle-Based Vaccine Targeting Self-Protein Interleukin-5 in Horses. Vaccines, 2020, 8, 213.	2.1	12
83	Effects of in vitro exposure to hay dust on expression of interleukin-23, -17, -8, and -1β and chemokine (C-X-C motif) ligand 2 by pulmonary mononuclear cells from horses susceptible to recurrent airway obstruction. American Journal of Veterinary Research, 2009, 70, 1277-1283.	0.3	11
84	Cellular and humoral immunity in chronic equine laminitis. Veterinary Immunology and Immunopathology, 2013, 153, 217-226.	0.5	11
85	Deletion of the ORF2 gene of the neuropathogenic equine herpesvirus type 1 strain Ab4 reduces virulence while maintaining strong immunogenicity. BMC Veterinary Research, 2018, 14, 245.	0.7	11
86	Phenotype and function of IgE-binding monocytes in equine Culicoides hypersensitivity. PLoS ONE, 2020, 15, e0233537.	1.1	11
87	Investigation of synovial fluid lubricants and inflammatory cytokines in the horse: a comparison of recombinant equine interleukin 1 beta-induced synovitis and joint lavage models. BMC Veterinary Research, 2021, 17, 189.	0.7	10
88	An investigation of the role of soluble CD14 in hospitalized, sick horses. Veterinary Immunology and Immunopathology, 2013, 155, 264-269.	0.5	9
89	CXCL10 production in equine monocytes is stimulated by interferon-gamma. Veterinary Immunology and Immunopathology, 2019, 207, 25-30.	0.5	9
90	lgE-Binding Monocytes Have an Enhanced Ability to Produce IL-8 (CXCL8) in Animals with Naturally Occurring Allergy. Journal of Immunology, 2021, 206, 2312-2321.	0.4	9

#	Article	IF	CITATIONS
91	Hyaluronic acid synthesis, degradation, and crosslinking in equine osteoarthritis: TNF-α-TSG-6-mediated HC-HA formation. Arthritis Research and Therapy, 2021, 23, 218.	1.6	9
92	Equine Arteritis Virus Elicits a Mucosal Antibody Response in the Reproductive Tract of Persistently Infected Stallions. Vaccine Journal, 2017, 24, .	3.2	8
93	Vaccination of horses with Lyme vaccines for dogs induces short-lasting antibody responses. Vaccine, 2017, 35, 4140-4147.	1.7	8
94	The expression of equine keratins K42 and K124 is restricted to the hoof epidermal lamellae of Equus caballus. PLoS ONE, 2019, 14, e0219234.	1.1	8
95	Can levamisole upregulate the equine cellâ€mediated macrophage (M1) dendritic cell (DC1) Tâ€helper 1 (CD4) T 889-896.	j ETQq1 (0.6	1 0.784314 r 8
96	Cul o 2 specific IgG3/5 antibodies predicted Culicoides hypersensitivity in a group imported Icelandic horses. BMC Veterinary Research, 2020, 16, 283.	0.7	8
97	Cloning and functional characterization of recombinant equine P-selectin. Veterinary Immunology and Immunopathology, 2007, 116, 115-130.	0.5	7
98	The Immune System of Horses and Other Equids. , 2016, , 549-555.		7
99	Development of a bead-based multiplex assay to quantify bovine interleukin-10, tumor necrosis factor-α, and interferon-γ concentrations in plasma and cell culture supernatant. JDS Communications, 2022, 3, 207-211.	0.5	7
100	Identification of equine P-selectin glycoprotein ligand-1 (CD162). Mammalian Genome, 2005, 16, 66-71.	1.0	6
101	Quantification of equine immunoglobulin A in serum and secretions by a fluorescent bead-based assay. Veterinary Immunology and Immunopathology, 2017, 188, 12-20.	0.5	6
102	New mAbs facilitate quantification of secreted equine TNF-α and flow cytometric analysis in monocytes and T cells. Veterinary Immunology and Immunopathology, 2021, 238, 110284.	0.5	6
103	Development of a quantitative COVID-19 multiplex assay and its use for serological surveillance in a low SARS-CoV-2 incidence community. PLoS ONE, 2022, 17, e0262868.	1.1	6
104	Peripheral blood basophils are the main source for early interleukin-4 secretion upon in vitro stimulation with Culicoides allergen in allergic horses. PLoS ONE, 2021, 16, e0252243.	1.1	5
105	Viral infection and allergy – What equine immune responses can tell us about disease severity and protection. Molecular Immunology, 2021, 135, 329-341.	1.0	5
106	CD154 Expression Indicates T Cell Activation Following Tetanus Toxoid Vaccination of Horses. Frontiers in Immunology, 2022, 13, 805026.	2.2	5
107	The effect of maternal immunity on the equine gammaherpesvirus type 2 and 5 viral load and antibody response. PLoS ONE, 2019, 14, e0218576.	1.1	4
108	Assessment of the impact of age and of bloodâ€derived inflammatory markers in horses with colitis. Journal of Veterinary Emergency and Critical Care, 2021, 31, 779-787.	0.4	4

#	Article	IF	CITATIONS
109	The Natural Cytotoxicity Receptor NKp44 (NCR2, CD336) Is Expressed on the Majority of Porcine NK Cells Ex Vivo Without Stimulation. Frontiers in Immunology, 2022, 13, 767530.	2.2	4
110	Detection of Borrelia burgdorferi outer surface protein antibodies in wild white-tailed deer (Odocoileus virginianus) in New York and Pennsylvania, USA. Veterinary Immunology and Immunopathology, 2013, 153, 165-169.	0.5	3
111	Immediate-early protein of equid herpesvirus type 1 as a target for cytotoxic T-lymphocytes in the Thoroughbred horse. Journal of General Virology, 2014, 95, 1783-1789.	1.3	3
112	Generation and characterization of a monoclonal antibody against canine tissue factor. Veterinary Immunology and Immunopathology, 2015, 167, 178-184.	0.5	1
113	A monoclonal antibody for detection of intracellular and secreted interleukin-2 in horses. Veterinary Immunology and Immunopathology, 2017, 191, 30-35.	0.5	1
114	The Effect of Uterine Lavage on Soluble CD14, Chemokine Ligand 2, and Interleukin 10 Levels in Mares With Postpartum Metritis. Journal of Equine Veterinary Science, 2021, 98, 103365.	0.4	1
115	Development of monoclonal antibodies for quantification of bovine tumor necrosis factor-α. JDS Communications, 2021, 2, 415-420.	0.5	1
116	Horses affected by EPM have increased sCD14 compared to healthy horses. Veterinary Immunology and Immunopathology, 2021, 242, 110338.	0.5	1
117	lgG4/7 responses correlate with contraception in mares vaccinated with SpayVac. Theriogenology, 2018, 121, 168-174.	0.9	Ο
118	An Equine Model for Vaccination against a Hepacivirus: Insights into Host Responses to E2 Recombinant Protein Vaccination and Subsequent Equine Hepacivirus Inoculation. Viruses, 2022, 14, 1401.	1.5	0