Marene Landström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/831587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Synergistic Cooperation between TGF-β and Hypoxia in Cancer and Fibrosis. Biomolecules, 2022, 12, 635.	4.0	17
2	Combined Transcriptomic and Protein Array Cytokine Profiling of Human Stem Cells from Dental Apical Papilla Modulated by Oral Bacteria. International Journal of Molecular Sciences, 2022, 23, 5098.	4.1	3
3	The ubiquitin-ligase TRAF6 and TGFβ type I receptor form a complex with Aurora kinase B contributing to mitotic progression and cytokinesis in cancer cells. EBioMedicine, 2022, 82, 104155.	6.1	5
4	Significance of PI3K signalling pathway in clear cell renal cell carcinoma in relation to VHL and HIF status. Journal of Clinical Pathology, 2021, 74, 216-222.	2.0	11
5	Fluorophore-conjugated Helicobacter pylori recombinant membrane protein (HopQ) labels primary colon cancer and metastases in orthotopic mouse models by binding CEA-related cell adhesion molecules. Translational Oncology, 2020, 13, 100857.	3.7	6
6	Cytokine Secretion, Viability, and Real-Time Proliferation of Apical-Papilla Stem Cells Upon Exposure to Oral Bacteria. Frontiers in Cellular and Infection Microbiology, 2020, 10, 620801.	3.9	8
7	Smad7 Enhances TGF-Î ² -Induced Transcription of c-Jun and HDAC6 Promoting Invasion of Prostate Cancer Cells. IScience, 2020, 23, 101470.	4.1	22
8	Interactions between TGF-β type I receptor and hypoxia-inducible factor-α mediates a synergistic crosstalk leading to poor prognosis for patients with clear cell renal cell carcinoma. Cell Cycle, 2019, 18, 2141-2156.	2.6	34
9	TRAF6 function as a novel co-regulator of Wnt3a target genes in prostate cancer. EBioMedicine, 2019, 45, 192-207.	6.1	25
10	PKCζ facilitates lymphatic metastatic spread of prostate cancer cells in a mice xenograft model. Oncogene, 2019, 38, 4215-4231.	5.9	12
11	The 2019 FASEB Science Research Conference on the TGFâ€Î² Superfamily: Signaling in Development and Disease, July 28 to August 2, 2019, West Palm Beach, Florida, USA. FASEB Journal, 2019, 33, 13064-13067.	0.5	4
12	Osteoblastâ€derived factors promote metastatic potential in human prostate cancer cells, in part via nonâ€canonical transforming growth factor β (TGFβ) signaling. Prostate, 2018, 78, 446-456.	2.3	14
13	VHL status regulates transforming growth factor-Î ² signaling pathways in renal cell carcinoma. Oncotarget, 2018, 9, 16297-16310.	1.8	12
14	TRAF6., 2018, , 5584-5592.		0
15	Helicobacter pylori Adapts to Chronic Infection and Gastric Disease via pH-Responsive BabA-Mediated Adherence. Cell Host and Microbe, 2017, 21, 376-389.	11.0	104
16	Clathrin-Independent Endocytosis Suppresses Cancer Cell Blebbing and Invasion. Cell Reports, 2017, 20, 1893-1905.	6.4	42
17	TGF-l ² promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85l±. Science Signaling, 2017, 10, .	3.6	157
18	Pro-invasive properties of Snail1 are regulated by sumoylation in response to TGFÎ ² stimulation in cancer. Oncotarget, 2017, 8, 97703-97726.	1.8	18

Marene Landström

#	Article	IF	CITATIONS
19	TGFβ activates PI3K-AKT signaling <i>via</i> TRAF6. Oncotarget, 2017, 8, 99205-99206.	1.8	9
20	The Role of Ubiquitination to Determine Non-Smad Signaling Responses. Methods in Molecular Biology, 2016, 1344, 355-363.	0.9	4
21	APPL proteins promote TCFÎ2-induced nuclear transport of the TGFÎ2 type I receptor intracellular domain. Oncotarget, 2016, 7, 279-292.	1.8	28
22	Transforming growth factor- $\hat{1}^2$ promotes aggressiveness and invasion of clear cell renal cell carcinoma. Oncotarget, 2016, 7, 35917-35931.	1.8	38
23	TRAF6. , 2016, , 1-8.		1
24	TRAF6 promotes TGFβ-induced invasion and cell-cycle regulation via Lys63-linked polyubiquitination of Lys178 in TGFβ type I receptor. Cell Cycle, 2015, 14, 554-565.	2.6	44
25	CIN85 modulates TGFÎ ² signaling by promoting the presentation of TGFÎ ² receptors on the cell surface. Journal of Cell Biology, 2015, 210, 319-332.	5.2	25
26	TGFβ-induced invasion of prostate cancer cells is promoted by c-Jun-dependent transcriptional activation of Snail1. Cell Cycle, 2014, 13, 2400-2414.	2.6	59
27	TRAF6 Stimulates the Tumor-Promoting Effects of TGFÎ ² Type I Receptor Through Polyubiquitination and Activation of Presenilin 1. Science Signaling, 2014, 7, ra2.	3.6	60
28	Regulated intramembrane proteolysis of the TGFβ type I receptor conveys oncogenic signals. Future Oncology, 2014, 10, 1853-1861.	2.4	10
29	APC and Smad7 link TGFÎ ² type I receptors to the microtubule system to promote cell migration. Molecular Biology of the Cell, 2012, 23, 2109-2121.	2.1	32
30	Polyubiquitination of Transforming Growth Factor β (TGFβ)-associated Kinase 1 Mediates Nuclear Factor-κB Activation in Response to Different Inflammatory Stimuli. Journal of Biological Chemistry, 2012, 287, 123-133.	3.4	54
31	Non-Smad signaling pathways. Cell and Tissue Research, 2012, 347, 11-20.	2.9	462
32	TRAF6., 2012,, 1916-1921.		1
33	TRAF6 ubiquitinates TGFÎ ² type I receptor to promote its cleavage and nuclear translocation in cancer. Nature Communications, 2011, 2, 330.	12.8	157
34	The TAK1–TRAF6 signalling pathway. International Journal of Biochemistry and Cell Biology, 2010, 42, 585-589.	2.8	243
35	Pro-apoptotic effect of aurothiomalate in prostate cancer cells. Cell Cycle, 2009, 8, 306-313.	2.6	19
36	TGF-β uses the E3-ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells. Future Oncology, 2009, 5, 1-3.	2.4	30

Marene Landström

#	Article	IF	CITATIONS
37	Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial–mesenchymal transition. Current Opinion in Cell Biology, 2009, 21, 166-176.	5.4	587
38	The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nature Cell Biology, 2008, 10, 1199-1207.	10.3	482
39	Reduced tumor growth in vivo and increased c-Abl activity in PC3 prostate cancer cells overexpressing the Shb adapter protein. BMC Cancer, 2007, 7, 161.	2.6	7
40	TGFβ1-Induced Activation of ATM and p53 Mediates Apoptosis in a Smad7-Dependent Manner. Cell Cycle, 2006, 5, 2787-2795.	2.6	52
41	2-Methoxyestradiol Induces Apoptosis in Cultured Human Anaplastic Thyroid Carcinoma Cells. Thyroid, 2006, 16, 143-150.	4.5	12
42	Interaction between Smad7 and β-Catenin: Importance for Transforming Growth Factor β-Induced Apoptosis. Molecular and Cellular Biology, 2005, 25, 1475-1488.	2.3	121
43	2-Methoxyestradiol-induced Apoptosis in Prostate Cancer Cells Requires Smad7. Journal of Biological Chemistry, 2005, 280, 14773-14779.	3.4	32
44	Smad7 is required for TGF-Î ² -induced activation of the small GTPase Cdc42. Journal of Cell Science, 2004, 117, 1835-1847.	2.0	56
45	Effects of 2-methoxyestradiol on proliferation, apoptosis and PET-tracer uptake in human prostate cancer cell aggregates. Nuclear Medicine and Biology, 2004, 31, 867-874.	0.6	12
46	Transforming Growth Factor-β1 (TGF-β)–induced Apoptosis of Prostate Cancer Cells Involves Smad7-dependent Activation of p38 by TGF-β-activated Kinase 1 and Mitogen-activated Protein Kinase Kinase 3. Molecular Biology of the Cell, 2003, 14, 529-544.	2.1	213
47	Transforming Growth Factor-β–induced Mobilization of Actin Cytoskeleton Requires Signaling by Small GTPases Cdc42 and RhoA. Molecular Biology of the Cell, 2002, 13, 902-914.	2.1	382
48	Mechanisms for 2-methoxyestradiol-induced apoptosis of prostate cancer cells. FEBS Letters, 2002, 531, 141-151.	2.8	69
49	Phosphorylation of Smad7 at Ser-249 Does Not Interfere with Its Inhibitory Role in Transforming Growth Factor-Î2-dependent Signaling but Affects Smad7-dependent Transcriptional Activation. Journal of Biological Chemistry, 2001, 276, 14344-14349.	3.4	47
50	Smad7 mediates apoptosis induced by transforming growth factor β in prostatic carcinoma cells. Current Biology, 2000, 10, 535-538.	3.9	149
51	Inhibitory effects of soy and rye diets on the development of Dunning R3327 prostate adenocarcinoma in rats. , 1998, 36, 151-161.		109
52	Transforming Growth Factor \hat{l}^21 Induces Nuclear Export of Inhibitory Smad7. Journal of Biological Chemistry, 1998, 273, 29195-29201.	3.4	218
53	Combined castration and fractionated radiotherapy in an experimental prostatic adenocarcinoma. International Journal of Radiation Oncology Biology Physics, 1997, 39, 1031-1036.	0.8	21
54	Apoptosis in rat prostatic adenocarcinoma is associated with rapid infiltration of cytotoxic T-cells		7

and activated macrophages. , 1997, 71, 451-455.

#	Article	IF	CITATIONS
55	Estrogen induces apoptosis in a rat prostatic adenocarcinoma: Association with an increased expression of TGF- 1²1 and its type-I and type-II receptors. International Journal of Cancer, 1996, 67, 573-579.	5.1	37
56	Differentiation-stage specific expression of oncoprotein 18 in human and rat prostatic adenocarcinoma. Prostate, 1995, 27, 102-109.	2.3	87
57	Osteoblast-derived factors increased metastatic potential in human prostate cancer cells. Bone Abstracts, 0, , .	0.0	О
58	Lys63-Linked Polyubiquitination of Transforming Growth Factor β Type I Receptor (TβRI) Specifies Oncogenic Signaling. , 0, , .		0