Jie Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8315756/publications.pdf Version: 2024-02-01

		257429	206102
53	2,354	24	48
papers	citations	h-index	g-index
53	53	53	2525
all docs	docs citations	times ranked	citing authors

LE DING

#	Article	IF	CITATIONS
1	FeZnK/SAPO-34 Catalyst for Efficient Conversion of CO2 to Light Olefins. Catalysis Letters, 2023, 153, 54-61.	2.6	2
2	Insight into mechanism of divalent metal cations with different d-bands classification in layered double hydroxides for light-driven CO2 reduction. Chemical Engineering Journal, 2022, 427, 130863.	12.7	15
3	Facile layer regulation strategy of layered double hydroxide nanosheets for artificial photosynthesis and mechanism insight. Chemical Engineering Journal, 2022, 434, 134434.	12.7	7
4	Core–Shell Covalently Linked Graphitic Carbon Nitride–Melamine–Resorcinol–Formaldehyde Microsphere Polymers for Efficient Photocatalytic CO ₂ Reduction to Methanol. Journal of the American Chemical Society, 2022, 144, 9576-9585.	13.7	62
5	Nanoscale 2D g-C3N4 decorating 3D hierarchical architecture LDH for artificial photosynthesis and mechanism insight. Chemical Engineering Journal, 2022, 448, 137338.	12.7	15
6	Ultrathin 2D Ti3C2 MXene Co-catalyst anchored on porous g-C3N4 for enhanced photocatalytic CO2 reduction under visible-light irradiation. Journal of Colloid and Interface Science, 2021, 582, 647-657.	9.4	111
7	Metal–support interactions in Fe–Cu–K admixed with SAPO-34 catalysts for highly selective transformation of CO ₂ and H ₂ into lower olefins. Journal of Materials Chemistry A, 2021, 9, 21877-21887.	10.3	11
8	Modification of Catalytic Properties of Hollandite Manganese Oxide by Ag Intercalation for Oxidative Acetalization of Ethanol to Diethoxyethane. ACS Catalysis, 2021, 11, 5347-5357.	11.2	14
9	Enhanced photocatalytic CO2 reduction over direct Z-scheme NiTiO3/g-C3N4 nanocomposite promoted by efficient interfacial charge transfer. Chemical Engineering Journal, 2021, 412, 128646.	12.7	93
10	Fe-Co-K/ZrO ₂ Catalytic Performance of CO ₂ Hydrogenation to Light Olefins. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 1053.	1.3	4
11	Plasmonic Ag Nanoparticles Decorated Acid-Aching Carbon Fibers for Enhanced Photocatalytic Reduction of CO2 into CH3OH Under Visible-Light Irradiation. Catalysis Letters, 2021, 151, 3079-3088.	2.6	6
12	Enhanced Light-driven CO2 Reduction on Metal-free Rich Terminal Oxygen-defects Carbon Nitride Nanosheets. Journal of Colloid and Interface Science, 2021, 608, 2505-2505.	9.4	4
13	In situ fabrication of amorphous TiO2/NH2-MIL-125(Ti) for enhanced photocatalytic CO2 into CH4 with H2O under visible-light irradiation. Journal of Colloid and Interface Science, 2020, 560, 857-865.	9.4	53
14	Microreactor technology for synthesis of ethyl methyl oxalate from diethyl oxalate with methanol and its kinectics. Canadian Journal of Chemical Engineering, 2020, 98, 2321-2329.	1.7	5
15	Highly efficient CH3OH production over Zn0.2Cd0.8S decorated g-C3N4 heterostructures for the photoreduction of CO2. Applied Surface Science, 2020, 528, 146943.	6.1	34
16	Promotional Effect of ZrO2 on supported FeCoK Catalysts for Ethylene Synthesis from catalytic CO2 hydrogenation. International Journal of Hydrogen Energy, 2020, 45, 15254-15262.	7.1	13
17	Effect of copper on highly effective Fe-Mn based catalysts during production of light olefins via Fischer-Tropsch process with low CO2 emission. Applied Catalysis B: Environmental, 2020, 278, 119302.	20.2	58
18	CO2 hydrogenation to light olefins with high-performance Fe0.30Co0.15Zr0.45K0.10O1.63. Journal of Catalysis, 2019, 377, 224-232.	6.2	37

Jie Ding

#	Article	IF	CITATIONS
19	Facile fabrication of oxygen and carbon co-doped carbon nitride nanosheets for efficient visible light photocatalytic H ₂ evolution and CO ₂ reduction. Dalton Transactions, 2019, 48, 12070-12079.	3.3	21
20	Visible-Light-Driven Photoreduction of CO2 to CH4 with H2O Over Amine-Functionalized MIL-125(Ti). Catalysis Letters, 2019, 149, 3287-3295.	2.6	18
21	Protonic acid-assisted universal synthesis of defect abundant multifunction carbon nitride semiconductor for highly-efficient visible light photocatalytic applications. Applied Catalysis B: Environmental, 2019, 258, 118011.	20.2	38
22	Effect of adsorption properties of phosphorus-doped TiO2 nanotubes on photocatalytic NO removal. Journal of Colloid and Interface Science, 2019, 553, 647-654.	9.4	24
23	Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH. Journal of CO2 Utilization, 2019, 33, 233-241.	6.8	114
24	Single-atom silver–manganese catalysts for photocatalytic CO2 reduction with H2O to CH4. Solar Energy Materials and Solar Cells, 2019, 195, 34-42.	6.2	41
25	Promotion of surface oxygen vacancies on the light olefins synthesis from catalytic CO2 hydrogenation over Fe K/ZrO2 catalysts. International Journal of Hydrogen Energy, 2019, 44, 11808-11816.	7.1	44
26	CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10, 5698.	12.8	571
27	Mechanisms of sulfite oxidation in sulfite-nitrite mixed solutions. Atmospheric Pollution Research, 2019, 10, 412-417.	3.8	9
28	Ambient hydrogenation of CO2 to methane with highly efficient and stable single-atom silver-manganese catalysts. Journal of Alloys and Compounds, 2019, 777, 406-414.	5.5	21
29	Single-atom silver-manganese nanocatalysts based on atom-economy design for reaction temperature-controlled selective hydrogenation of bioresources-derivable diethyl oxalate to ethyl glycolate and acetaldehyde diethyl acetal. Applied Catalysis B: Environmental, 2018, 232, 348-354.	20.2	21
30	Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol. Applied Catalysis B: Environmental, 2017, 209, 530-542.	20.2	81
31	Catalytic ozonation for low-temperature NOX (x = 1, 2) removal with OH radicals over Cu doped Ce0.90Co0.10O2â ^{~1} Ĵ´ catalysts and mechanism analysis. Fuel Processing Technology, 2017, 167, 545-554.	7.2	9
32	Facile decoration of carbon fibers with Ag nanoparticles for adsorption and photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2017, 202, 314-325.	20.2	59
33	Enhanced catalytic ozonation over reduced spinel CoMn ₂ O ₄ for NO _x removal: active site and mechanism analysis. RSC Advances, 2016, 6, 115213-115221.	3.6	15
34	Selective denitrification of flue gas by O3 and ethanol mixtures in a duct: Investigation of processes and mechanisms. Journal of Hazardous Materials, 2016, 311, 218-229.	12.4	9
35	Enhanced catalytic ozonation for NOx removal with CuFe 2 O 4 nanoparticles and mechanism analysis. Journal of Molecular Catalysis A, 2016, 424, 153-161.	4.8	63
36	Effect of fluorine additives on the performance of amorphous Ce-Ti catalyst and its promotional progress on ozone for NO X (x = 1, 2) removal at low temperature. Journal of Fluorine Chemistry, 2016, 191, 120-128.	1.7	10

Jie Ding

#	ARTICLE	IF	CITATIONS
37	Low-temperature NO _x (x = 1, 2) removal with ˙OH radicals from catalytic ozonation over a RGO–CeO ₂ nanocomposite: the highly promotional effect of oxygen vacancies. RSC Advances, 2016, 6, 87869-87877.	3.6	14
38	Low-Temperature NO _X (x = 1, 2) Removal with •OH Radicals from Catalytic Ozonation over α-FeOOH. Ozone: Science and Engineering, 2016, 38, 382-394.	2.5	15
39	Effect of fluoride doping for catalytic ozonation of low-temperature denitrification over cerium–titanium catalysts. Journal of Alloys and Compounds, 2016, 665, 411-417.	5.5	18
40	Structural characterizations of fluoride doped CeTi nanoparticles and its differently promotional mechanisms on ozonation for low-temperature removal of NO x (x = 1, 2). Chemical Engineering Journal, 2016, 286, 549-559.	12.7	36
41	A New Insight into Catalytic Ozonation with Nanosized Ce–Ti Oxides for NO _{<i>x</i>} Removal: Confirmation of Ce–O–Ti for Active Sites. Industrial & Engineering Chemistry Research, 2015, 54, 2012-2022.	3.7	74
42	Kinetics of Sulfite Oxidation in the Simultaneous Desulfurization and Denitrification of the Oxidationâ€Absorption Process. Chemical Engineering and Technology, 2015, 38, 797-803.	1.5	11
43	New insight into the promoting role of process on the CeO2–WO3/TiO2 catalyst for NO reduction with NH3 at low-temperature. Journal of Colloid and Interface Science, 2015, 448, 417-426.	9.4	40
44	Size- and shape-controlled synthesis and catalytic performance of iron–aluminum mixed oxide nanoparticles for NOX and SO2 removal with hydrogen peroxide. Journal of Hazardous Materials, 2015, 283, 633-642.	12.4	42
45	Simultaneous removal of NOX and SO2 from coal-fired flue gas by catalytic oxidation-removal process with H2O2. Chemical Engineering Journal, 2014, 243, 176-182.	12.7	163
46	Simultaneous removal of NOX and SO2 with H2O2 over Fe based catalysts at low temperature. RSC Advances, 2014, 4, 5394.	3.6	53
47	Simultaneous desulfurization and denitrification of flue gas by catalytic ozonation over Ce–Ti catalyst. Fuel Processing Technology, 2014, 128, 449-455.	7.2	46
48	Mesoporous TiO2 as the support of tetraethylenepentamine for CO2 capture from simulated flue gas. RSC Advances, 2013, 3, 23785.	3.6	13
49	Effect of nano-Calcium Carbonate on microcellular foaming of polypropylene. Journal of Materials Science, 2013, 48, 2504-2511.	3.7	44
50	Foaming of Homogeneous Polypropylene and Ethylene-Polypropylene Block Copolymer Using Supercritical Carbon Dioxide. Polymer-Plastics Technology and Engineering, 2013, 52, 592-598.	1.9	4
51	Orthogonal Design Study on Factors Affecting Foaming Behaviors of Polypropylene and Polypropylene/Nano-Calcium Carbonate Nanocomposites. Polymer-Plastics Technology and Engineering, 2013, 52, 7-15.	1.9	4
52	Foaming behavior of microcellular foam polypropylene/modified nano calcium carbonate composites. Journal of Applied Polymer Science, 2013, 128, 3639-3651.	2.6	55
53	Foaming of polypropylene with supercritical carbon dioxide: An experimental and theoretical study on a new process. Journal of Applied Polymer Science, 2013, 130, 2877-2885.	2.6	10